

ICESat (GLAS) Science Processing

Software Document Series

ICESat Contacts:

Bob E. Schutz, GLAS Science Team Leader

University of Texas Center for Space Research
Austin, Texas 78759-5321

David W. Hancock III, Science Software Development Leader

NASA/GSFC Wallops Flight Facility
Wallops Island, Virginia 23337

H. Jay Zwally, ICESat Project Scientist

NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

Volume #
GSAS Detailed Design Document
Version 5.0

Jeffrey Lee/SGT, Inc.
Cryospheric Sciences Branch
Hydrospheric and Biospheric Sciences Laboratory
NASA GSFC/Wallops Flight Facility

March 2006

March 2006 Page iii Version 5.0

Foreword

This document describes the detailed design of GLAS Science Algorithm Software.
This document is developed under the structure of the NASA STD-2100-91, a NASA
standard defining a four-volume set of documents to cover an entire software life
cycle. Under this standard a section of any volume may, if necessary, be rolled out to
its own separate document. This document is a roll- out of the detailed design within
the Product Specification Volume.

The GEOSCIENCE LASER ALTIMETER SYSTEM (GLAS) is a part of the EOS pro-
gram. This laser altimetry mission will be carried on the spacecraft designated EOS
ICESat (Ice, Cloud and Land Elevation Satellite). The GLAS laser is a frequency-dou-
bled, cavity-pumped, solid state Nd:YAG laser.

This document was prepared by the Cryospheric Sciences Branch at NASA GSFC/
WFF, Wallops Island, VA, in support of B. E. Schutz, GLAS Science Team Leader for
the GLAS Investigation. This work was performed under the direction of David W.
Hancock, III, who may be contacted at (757) 824-1238, David.W.Hancock@nasa.gov
(e-mail), or (757) 824-1036 (FAX).

This document was created through the efforts of the GLAS Science Software Devel-
opment Team. Current team members include:

SGT, Inc./Kristine Barbieri

SGT, Inc./Suneel Bhardwaj

SGT, Inc./Lisa Brittingham

SGT, Inc./John DiMarzio

614/David W. Hancock, III

SGT, Inc./Peggy Jester

SGT, Inc./Jeffrey Lee

SGT, Inc./Dennis Lockwood

SGT, Inc./Steve McLaughlin

SSAI/Steve Palm

SGT, Inc./Carol Purdy

SGT, Inc./Lee Anne Roberts

SGT, Inc./Jack Saba

GSAS Detailed Design Document Foreword

Version 5.0 Page iv March 2006

March 2006 Page v Version 5.0

Table of Contents

Foreword . iii
Table of Contents . v
List of Figures. ix
List of Tables .xi

Section 1 Introduction

1.1 Identification of Document . 1-1
1.2 Scope of Document . 1-1
1.3 Purpose and Objectives of Document . 1-1
1.4 Document Status and Schedule . 1-1
1.5 Document Organization . 1-1
1.6 Document Change History . 1-2

Section 2 Related Documentation

2.1 Parent Documents. 2-1
2.2 Applicable Documents. 2-1
2.3 Information Documents . 2-2

Section 3 Design Issues

3.1 Requirements. 3-1
3.2 Single vs. Multiple Executables . 3-1
3.3 Software Reuse . 3-2
3.4 I/O and Unit Conversion . 3-2
3.5 Reprocessing and Pass-Thrus. 3-2
3.6 Data Buffering. 3-3

Section 4 Design Overview

4.1 GSAS Design Overview. 4-1
4.2 PGEs . 4-1
4.3 Files . 4-3
4.4 Science Algorithms . 4-3
4.5 Utilities . 4-3

Section 5 Foundation Libraries

5.1 The Platform Library (platform_lib) . 5-1
5.2 The Control Library (cntrl_lib) . 5-2
5.3 The Error Library (err_lib) . 5-3
5.4 The Math Library (math_lib) . 5-4
5.5 The Ancillary Library (anc_lib) . 5-5
5.6 The File Library (file_lib) . 5-7
5.7 The Time Library (time_lib) . 5-7
5.8 The Product Library (prod_lib). 5-8
5.9 The Exec Library (exec_lib) . 5-9

GSAS Detailed Design Document Table of Contents

Version 5.0 Page vi March 2006

Section 6 Common Functionality

6.1 Control File Parsing . 6-1
6.2 ANC07 Constants Files . 6-5
6.3 Invalid Values and Error/Status Reporting 6-6
6.4 ANC06 Metadata/Log File . 6-9
6.5 Product Internal Data Storage, Conversion and I/O 6-10
6.6 Product Headers . 6-13
6.7 Summary. 6-13

Section 7 GSAS Core PGEs

7.1 Function . 7-1
7.2 Requirements . 7-1
7.3 Approach . 7-1
7.4 Design . 7-2

Section 8 GLAS_L0proc

8.1 Overview . 8-1
8.2 Function . 8-1
8.3 Approach . 8-2
8.4 Input and Output Files. 8-2
8.5 Design . 8-7

Section 9 GLAS_L1A

9.1 Overview . 9-1
9.2 Function . 9-1
9.3 Design Approach. 9-1
9.4 Input and Output Files. 9-2
9.5 GLAS_L1A PGE . 9-2
9.6 L1A Manager (L1A_Mgr) . 9-4
9.7 PGE/Manager Implementation Details. 9-6
9.8 L1A_Subsystem . 9-7

Section 10 GLAS_Alt

10.1 Function . 10-1
10.2 Design Approach. 10-1
10.3 Input and Output Files. 10-2
10.4 GLAS_Alt . 10-5
10.5 Waveform Manager (WF_Mgr) . 10-5
10.6 Elevation Manager (Elev_Mgr) . 10-9
10.7 PGE/Manager Implementation Details. 10-13
10.8 WF_Subsystem . 10-13
10.9 Elev_Subsystem . 10-21

Section 11 GLAS_Atm

11.1 Overview . 11-1
11.2 Function . 11-1
11.3 Design Approach. 11-1

Table of Contents GSAS Detailed Design Document

March 2006 Page vii Version 5.0

11.4 Input and Output Files . 11-2
11.5 Functions . 11-4
11.6 Atm_Subsystem. 11-9

Section 12 GLAS_Reader

12.1 Function . 12-1
12.2 Design Approach . 12-1
12.3 Input and Output Files . 12-1
12.4 GLAS_Reader . 12-2

Section 13 met_util

13.1 Overview . 13-1
13.2 Function . 13-1
13.3 Design Approach . 13-1
13.4 Input and Output Files . 13-1
13.5 Functions . 13-1
13.6 Functional Overview . 13-2

Section 14 reforbit_util

14.1 Overview . 14-1
14.2 Function . 14-1
14.3 Design Approach . 14-1
14.4 Input and Output Files . 14-1
14.5 Functions . 14-1
14.6 Functional Overview . 14-2

Section 15 createGran_util

15.1 Overview . 15-1
15.2 Function . 15-1
15.3 Design Approach . 15-1
15.4 Input and Output Files . 15-4
15.5 Functions . 15-5
15.6 Functional Overview . 15-5

Section 16 atm_anc

16.1 Overview . 16-1
16.2 Function . 16-1
16.3 Design Approach . 16-1
16.4 Input and Output Files . 16-1
16.5 Functions . 16-2
16.6 Functional Overview of Calibration Modules 16-2

Section 17 GLAS_Meta

17.1 Function . 17-1
17.2 Design Approach . 17-1
17.3 Input and Output Files . 17-1
17.4 GLAS_Meta . 17-3

GSAS Detailed Design Document Table of Contents

Version 5.0 Page viii March 2006

Section 18 GLAS_Tick

18.1 Function . 18-1
18.2 Design Approach. 18-1
18.3 Input and Output Files. 18-1
18.4 GLAS_Tick . 18-2

Section 19 GLAS_APID

19.1 Function . 19-1
19.2 Design Approach. 19-1
19.3 Input and Output Files. 19-1
19.4 GLAS_APID . 19-2

Section 20 Maker

20.1 Overview . 20-1
20.2 Function . 20-1
20.3 Design Approach. 20-1
20.4 Input and Output Files. 20-1
20.5 Functions. 20-1
20.6 Functional Overview . 20-3

Appendix A Processing Scenarios

Appendix B Makefiles and Libraries

B.1 Compilation. B-1
B.2 Using Libraries . B-2
B.3 Some Development Hints . B-2
B.4 Makefile Details . B-3
B.5 Types of Makefiles . B-3
B.6 A Sample Heavily-Commented Makefile B-4

Abbreviations & Acronyms. AB-1
Glossary. GL-1

March 2006 Page ix Version 5.0

List of Figures

Figure 1-1 I-SIPS Software Top-Level Decomposition 1-2

Figure 4-1 GSAS Layers . 4-1

Figure 4-2 Simplified GSAS Data Flow Diagram . 4-2

Figure 6-1 Error Ancillary File Format . 6-8

Figure 7-1 Top-Level Structure Chart . 7-3

Figure 7-2 MainInit . 7-4

Figure 7-3 GetControl . 7-5

Figure 7-4 ReadData . 7-8

Figure 8-1 GLAS_L0proc Structure Chart . 8-8

Figure 9-1 GLAS_L1A Structure Chart. 9-4

Figure 9-2 L1A_Mgr Structure Chart . 9-5

Figure 9-3 L1A Manager Flow Chart . 9-6

Figure 9-4 Level 1A Computations . 9-8

Figure 10-1 WFMgr Structure Chart . 10-7

Figure 10-2 ElevMgr Structure Chart . 10-10

Figure 11-1 GLAS_Atm Structure Chart . 11-5

Figure 11-2 Atm_Mgr Structure Chart . 11-6

Figure 11-3 ATM Manager - Part 1 . 11-7

Figure 11-4 ATM Manager - Part 2 . 11-8

Figure 11-5 Atmosphere Subsystem Processes . 11-10

Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile
Locations, and DEM Subprocesses . 11-12

Figure 11-7 ATM L1B Backscatter Subprocesses. 11-13

Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses 11-14

Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses 11-14

Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses. 11-15

Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses. . . . 11-16

Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses 11-17

Figure 11-13 ATM Calibration Coefficient / Profile Location /
DEM Modules. 11-18

Figure 11-14 ATM Backscatter Modules. 11-18

GSAS Detailed Design Document List of Figures

Version 5.0 Page x March 2006

Figure 11-15 ATM L1B QA Statistics / Write ATM Modules 11-19

Figure 11-16 ATM 20 sec Buffering Module . 11-19

Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules 11-20

Figure 11-18 ATM Optical Properties Module . 11-20

Figure 11-19 L2 QA Statistics / Write ATM Modules 11-21

Figure 13-1 Process Flow Diagram: Overall Process . 13-3

Figure 13-2 Process Flow Diagram: Shell Script . 13-4

Figure 14-1 Process Flow Diagram . 14-3

Figure 15-1 Process Flow Diagram . 15-6

Figure 16-1 Process Flow Diagram . 16-3

March 2006 Page xi Version 5.0

List of Tables

Table 4-1 Subsystem, Libraries and Products . 4-3

Table 5-1 Library Inter-dependencies . 5-1

Table 5-2 platform_lib Modules. 5-2

Table 5-3 cntrl_lib Modules . 5-2

Table 5-4 err_lib Modules . 5-3

Table 5-5 math_lib Modules . 5-4

Table 5-6 anc_lib Modules . 5-5

Table 5-7 file_lib Modules. 5-7

Table 5-8 time_lib Modules . 5-8

Table 5-9 prod_lib Modules . 5-8

Table 5-10 fexec_lib Modules . 5-9

Table 6-1 Required Single-Instance Keywords . 6-2

Table 6-2 Optional Multiple-Instance Keywords . 6-2

Table 6-3 PASSID Control Line Elements. 6-2

Table 6-4 passid Field Description. 6-3

Table 6-5 File Segment and Version Fields. 6-4

Table 6-6 Invalid Values . 6-6

Table 6-7 PGE Exit Status Codes . 6-7

Table 6-8 Error String Format. 6-8

Table 6-9 Error Sections. 6-8

Table 6-10 Error Severity Codes. 6-9

Table 6-11 Product Module Functionality . 6-10

Table 8-1 GLAS_L0proc Inputs . 8-2

Table 8-3 Supported APIDs . 8-3

Table 8-2 GLAS_L0proc Outputs. 8-3

Table 8-4 ANC33 Field Descriptions . 8-4

Table 8-6 ANC32 Format/Description . 8-6

Table 8-5 ANC29 Format/Description . 8-6

Table 9-1 GLAS_L1A Inputs. 9-2

Table 9-2 GLAS_L1A Outputs . 9-3

GSAS Detailed Design Document List of Tables

Version 5.0 Page xii March 2006

Table 10-1 GLAS_Alt Inputs. 10-2

Table 10-2 GLAS_Alt Outputs . 10-4

Table 11-1 GLAS_Atm Inputs . 11-2

Table 11-2 GLAS_Atm Outputs . 11-3

Table 12-1 GLAS_Reader Inputs . 12-1

Table 13-1 met_util Inputs . 13-2

Table 13-2 met_util Outputs . 13-2

Table 14-1 createGran_util Inputs . 14-1

Table 14-2 createGran_util Outputs . 14-2

Table 15-1 createGran_util Inputs . 15-4

Table 15-2 createGran_util Outputs . 15-4

Table 16-1 atm_anc Inputs . 16-1

Table 16-2 atm_anc Outputs. 16-2

Table 17-1 GLAS_Meta Inputs . 17-1

Table 17-2 GLAS_Meta Outputs . 17-2

Table 18-1 GLAS_Tick Inputs. 18-1

Table 18-2 GLAS_Tick Outputs . 18-2

Table 19-1 GLAS_APID Inputs . 19-1

Table 19-2 GLAS_APID Outputs . 19-2

Table 20-1 Maker Input Files . 20-2

Table 20-2 Maker Output Files. 20-2

Table A-1 Reprocessing Scenarios . A-1

March 2006 Page 1-1 Version 5.0

Section 1

Introduction

1.1 Identification of Document

This document is identified as the GLAS Science Algorithm Software (GSAS)
Detailed Design Document. The unique document identification number within the
GLAS Ground Data System numbering scheme is TBD. Successive editions of this
document will be uniquely identified by the cover and page date marks.

1.2 Scope of Document

The GLAS I-SIPS Data Processing System, show in Figure 1-1, provides data process-
ing and mission support for the Geoscience Laser Altimeter System (GLAS). I-SIPS is
composed of two major software components - the GLAS Science Algorithm Soft-
ware (GSAS) and the Scheduling and Data Management System (SDMS). GSAS pro-
cesses Level-0 satellite data and creates EOS Level 1A/B and 2 data products. SDMS
provides for scheduling of processing and the ingest, staging, archiving and catalog-
ing of associated data files. This document describes the detailed design of GSAS.

1.3 Purpose and Objectives of Document

This document describes the detailed design of the GLAS Science Algorithm Soft-
ware. It contains descriptions, flow charts, data flow diagrams, and structure charts
for each major component of the GSAS.

The purpose of this document is to present the detailed design of the GSAS. It is
intended as a reference source which would assist the maintenance programmer in
making changes which fix or enhance the documented software.

1.4 Document Status and Schedule

The GLAS Science Algorithm Software Detailed Design Document is currently
released as Version 5.0 (V5.0).

1.5 Document Organization

This document's outline is assembled in a form similar to those presented in the
NASA Software Engineering Program [Information Document 2.3a].

GSAS Detailed Design Document Introduction

Version 5.0 Page 1-2 March 2006

1.6 Document Change History

Figure 1-1 I-SIPS Software Top-Level Decomposition

Document Name: GLAS Science Algorithm Software Detailed Design Document

Version Number Date Nature of Change

Version 0 August 1999 Original Version

Version 1 November 2000 Revised for V1 software.

Version 2 November 2001 Revised for V2 software.

Version 2.2 July 2002 Revised for V2.2 software.

Version 3.0 October 2002 Revised for V3.0 software.

Version 4.0 August 2004 Revised for V4.0 software.

Version 5.0 October 2005 Revised for V5.0 software.

GSAS: GLAS Science Algorithm Software : Science Data Processing and Utilities

GLAS_Atm
L1B and 2 Atmosphere

Backscatter Boundary
Layers

Cross
Sections

Optical
Depth

SDMS: Science Data Management System: Ingest, Stage, Schedule, Archive, Distribute

ANCxx
(Ancillary)

GLA00_xx
(APIDs)

GLAxx Files
(Products)

Control Files
QAPxx Files

(QA)
ANC06
(Log)

BRWxx Files
(Browse)

METxx Files
(Metadata)

GLA00_xx
(APIDs)

GLAS_L0proc

ANC29
ANC32

GLAS_L1A

L1A Alt

L1A Eng

L1A Att

L1A Atm

GLA01

GLA02

GLA03

GLA04

QAPxx

GLAS_Alt

L1B Waveform/
Range Dist

Assessemnt, Std
Range CCorr,
POD/PAD, Inst

Corr, Det Geoloc,
Calc WF

Characteristics

L1B and 2 Elevation
POD Interp,
Geoid, Trop,

Tides, Rough &
Slope, Std Spoc

Loc & Elev,
Reflectivity,

Surface Elevation
& Characteristics

Ice
Sheet
Spot &
Elev

Sea Ice
Spot &
Elev

Land
Spot &
Elev

Ocean
Spot &
Elev

GLA05 GLA06 GLA12 GLA13 GLA14 GLA15

GLA07 GLA08 GLA10 GLA11GLA09 QAPxx

GLAS_Tick

ANC50

GLA03 ANC32
MET_Util

ANC01

ANC40

ATM_Anc

ANC36

QABrowse

BRWxx

QAPxx

Create_GLA16

GLA16

GLAxx

QAPG

QAPxxGLAxx

GLAS_Meta

METxx

GLAxx

GLAS_Reader
GLAS_APID

ANCxxGLAxx

Text

March 2006 Page 2-1 Version 5.0

Section 2

Related Documentation

2.1 Parent Documents

Parent documents are those external, higher-level documents that contribute infor-
mation to the scope and content of this document. The following GLAS documents
are parent to this document.

a)

GLAS Science Software Management Plan

 (GLAS SSMP), NASA/TM-1999-
208641/Version 3/Volume 1, August 1998, NASA/GSFC Wallops Flight Facil-
ity.

b)

GLAS Science Data Management Plan

 (GLAS SDMP), NASA/TM-1999-208641/
Version 4/Volume 2, July 1999, NASA/GSFC Wallops Flight Facility.

c)

GLAS Science Software Requirements Document

 (GLAS SSRD), NASA/TM-2001-
208641/Version 2.1/Volume 3, November 2000, NASA/GSFC Wallops Flight
Facility.

d)

GLAS I-SIPS Software Architectural Design Document

, Version 2.0, October 1998,
NASA/GSFC Wallops Flight Facility.

2.2 Applicable Documents

Applicable documents include reference documents that are not parent documents.
This category includes reference documents that have direct applicability to, or con-
tain policies binding upon, or information directing or dictating the content of this
document. The following GLAS, EOS Project, NASA, or other Agency documents are
cited as applicable to this architectural design document.

a)

Data Production Software and Science Computing Facility (SCF) Standards and
Guidelines

, 423-16-01, January 14, 1994, Goddard Space Flight Center.

b)

EOS Output Data Products, Processes, and Input Requirements

, Version 3.2,
November 1995, Science Processing Support Office.

c)

NASA Earth Observing System Geoscience Laser Altimeter System GLAS Science
Requirements Document,

Version 2.01, October 1997, Center for Space Research,
University of Texas at Austin.

d)

Precision Orbit Determination (POD),

Algorithm Theoretical Basis Document,
Version 2.2, October 2002, Center for Space Research, The University of Texas
at Austin.

e)

Atmospheric Delay Correction to GLAS Laser Altimeter Ranges,

Algorithm Theo-
retical Basis Document, February 1999, Massachusetts Institute of Technology.

f)

Geoscience Laser Altimeter System: Surface Roughness of Ice Sheets,

Algorithm
Theoretical Basis Document, Version 0.3, December 1996, University of Wis-
consin.

GSAS Detailed Design Document Related Documentation

Version 5.0 Page 2-2 March 2006

g)

Determination of Sea Ice Surface Roughness from Laser Altimeter Waveform,

Algo-
rithm Theoretical Basis Document, Version 0 (Preliminary), December 1995,
The Ohio State University.

h)

Laser Footprint Location and Surface Profiles

, Algorithm Theoretical Basis Docu-
ment, Version 3.0, October 2002, Center for Space Research, The University of
Texas at Austin.

i)

Precision Attitude Determination (PAD)

, Algorithm Theoretical Basis Document,
Version 2.2, October 2002, Center for Space Research, The University of Texas
at Austin.

j)

The Algorithm Theoretical Basis Document for Level 1A Processing

, Version 1.6,
June 2005, NASA Goddard Space Flight Center Wallops Flight Facility.

k)

Derivation of Range and Range Distributions From Laser Pulse Waveform Analysis
for Surface Elevations, Roughness, Slope, and Vegetation Heights

, Algorithm Theo-
retical Basis Document, Version 4.3, August 2004, NASA GSFC, et. al.

l)

Algorithm Theoretical Basis Document for the GLAS Atmospheric Channel Observa-
tions

, Version 0 (Preliminary), December 1995, Goddard Space Flight Center.

2.3 Information Documents

The following documents are provided as sources of information that provide back-
ground or supplemental information that may clarify or amplify material presented
in this document.

a)

NASA Software Documentation Standard Software Engineering Program

, NASA-
STD-21000-91, July 29, 1991, NASA.

b)

Science User’s Guide and Operations Procedure Handbook for the ECS Project, Vol-
ume 4: Software Developer’s Guide to Preparation, Delivery, Integration and Test
with ECS

, Final 205-CD-002-002, August 1995, Hughes Information Technol-
ogy Corporation.

c)

GLAS Science Algorithm Software (GSAS) User’s Guide

, Version 6.0, October
2005, NASA Goddard Space Flight Center.

d)

GLAS Standard Data Products Specification - Level 1

, Version 8.0, October 2005,
NASA/GSFC Wallops Flight Facility.

e)

GLAS Standard Data Products Specification - Level 2

, Version 8.0, October 2005,
NASA Goddard Space Flight Center Wallops Flight Facility.

f)

Data Production Software, Data Management, and Flight Operations Working
Agreement for AIRS, AMSU-A and MHS/AMSU-B

, January 1994, NASA God-
dard Space Flight Center,.

March 2006 Page 3-1 Version 5.0

Section 3

Design Issues

3.1 Requirements

GSAS was designed with many specific and several generic requirements in mind.
These requirements may be found in the GLAS Software Requirement Document.
Several of the more critical requirements are listed here:

• The software will be designed for maximum portability and code-reuse.

• When possible, science algorithm subroutines should be coded in a manner to
allow for re-use outside of GSAS. Subroutines, for example, should pass data
via arguments and not rely on the presence of global product data structures.

• All Level 1 and Level 2 standard data products will be produced in an integer-
binary format. (The GLA16 HDF-EOS product is an exception to this.)

• Input and output products will be delimited by start and stop times.

• Full processing history will be available via metadata.

• Standardized messaging and error-handling using local ancillary files will be
available to all subprocesses.

• Changeable parameters will be defined in local ancillary files.

• Implement the capability to fully and partially process and reprocess data
with several different scenarios, including:

- One processing string that starts with GLAS telemetry data (GLA00) as
input to create all output L1A products (GLA01-03).

- One processing string that starts with GPS-specific GLAS telemetry data
(GLA00_xx) as input to create all output L1A GPS product (GLA04_GPS).

- One processing string that starts with L1A altimetry data (GLA01) as input
to create an output waveform product (GLA05).

- One processing string that starts with a waveform product (GLA05) and
two atmosphere products (GLA09 and GLA11) as input to create output
elevation products (GLA06, 12,13,14,15).

- One processing string that starts with L1A atmosphere (GLA02) input and
produces output atmosphere products (GLA07,08,09,10,11).

- One processing string that starts with a waveform product (GLA05) as
input to produce an output elevation product (GLA06).

3.2 Single vs. Multiple Executables

In the earlier designs of GSAS, the team incorporated a single-executable strategy.
This approach changed in V2 to focus on multiple PGEs (Product Generation Execut-

November 2003GSAS Detailed Design Document Design Issues

Version 5.0 Page 3-2 March 2006

ables). A PGE is an executable program which performs a specific function. The ‘core’
PGEs perform specific portions of the GLAS data processing and generate deliver-
able GLAS Data Products (Products). The core PGEs are accompanied by a set of util-
ity PGEs which perform such functions as creating ancillary data files, performing
quality assurance and generating browse products.

3.3 Software Reuse

The team recognized that there would be several task–specific PGEs which interface
with data created by the I-SIPS data processing system. In order to effect the reuse of
this software, the GLAS Team implemented major components and subsystems as
shared libraries. These libraries are generic such that they may be used by several dif-
ferent GSAS components without modification. It is intended that associated utility
software will be written to use these libraries in order to maximize code-reuse and
ease coding and maintenance tasks.

3.4 I/O and Unit Conversion

The software reuse approach was especially important in the design of the GLAS
Product input/output routines. The I/O routines were designed in a modular fash-
ion to make them available for use in software outside of the core PGEs. All input/
output statements are implemented in product-specific subroutines. All data trans-
formations (scaling from integer to floating point and vice versa) are implemented in
product-specific routines. This insures consistency in the conversion process method-
ology and forces a great deal of granularity in the design. Additionally, care was
taken to minimize the number of support routines required by the I/O conversion
processes in order to maximize the potential for software reuse.

3.5 Reprocessing and Pass-Thrus

Reprocessing and partial-processing requirements dictated great care in the design of
GSAS. In addition to executing all science algorithms consecutively, it is required that
GSAS be able to run selected science algorithms with varying input data types. Pro-
cessing with a selected set of science algorithms and products is defined as a specific
processing “scenario”. The software not only must be able to execute selected science
algorithms, it is required to rewrite selected products, partially replacing selected
data. An example of this is replacing the orbit on the primary elevation product
(GLA06).

In order to accommodate the reprocessing requirement, the GSAS processing soft-
ware is designed to use “pass-thru” data management. The “pass-thru” concept dic-
tates that common data are passed from lower-numbered products to higher-
numbered products on input. In the design, the products can be input, output or
both. Science algorithms are required to use input data from the highest-numbered
product possible and pass computed data to requisite higher-numbered products.

Design Issues GSAS Detailed Design Document

March 2006 Page 3-3 Version 5.0

3.6 Data Buffering

Data buffering is a fairly complex process. GSAS is required to process data one sec-
ond at a time without buffering, except in two cases: the Atmosphere subsystem and
the L1A L_Att processing.

The Atmosphere subsystem ATBD has required that data be buffered to twenty sec-
onds. This buffering has been designed into the Atmosphere subsystem, such that
other portions of the software are not impacted by the added complexity. However,
during the implementation it was decided to minimize the buffering complexity by
adopting a constraint such that GLA08-11 will not be processed independently of one
another. This constraint somewhat limits the granularity of re-processing, but was
approved by the GLAS Change Control Board as an acceptable trade-off. The buffer-
ing concept is fully documented in the Atmosphere section.

L_Att processing is complicated by the issue of time delays aboard the spacecraft. All
data for one second of APID 1984 (PRAP) are not contained within a single one sec-
ond packet. In order to precisely time-align the relevant data, the L1A subsystem
uses a 6-record double-buffered algorithm to match the relevant LRS and IST data to
the APID19 shot times. Given the potential for missing data, some valid PRAP data
may be lost if its corresponding APID19 data are missing.

November 2003GSAS Detailed Design Document Design Issues

Version 5.0 Page 3-4 March 2006

March 2006 Page 4-1 Version 5.0

Section 4

Design Overview

4.1 GSAS Design Overview

The GSAS processing system is designed to be both efficient and flexible. The system
is designed for operational flexibility, considering data availability constraints and
reprocessing requirements. In order to meet these requirements, the design of the
software consists of up to four functional layers which work together to perform the
data processing function. From the bottom up, the first layer is a set of generic library
routines which form the foundation of the software. The second layer is comprised of
the science algorithm subsystem libraries, which perform the actual transformation
from raw data into GLAS products. The third layer is the subsystem managers, which
control the execution of the science algorithms. The fourth and final layer is made of
four core PGEs, executable “shells” which surround the subsystem managers and
provide standardized I/O, error handling, and initialization.

4.2 PGEs

The GSAS PGEs are:

• GLAS_L0proc, which processes GLAS L0 data;

• GLAS_L1A, which executes the Level 1A (L1A) subsystem;

• GLAS_Alt, which executes the Waveforms (WF) and Elevation (Elev) sub-
systems;

• GLAS_Atm, which executes the Atmosphere (Atm) subsystems;

• GLAS_Meta, which products inventory metadata files;.

• and Other PGEs which perform utility functions.

The first four PGEs are “core” PGEs. Figure 4-2 is a very simplified data flow diagram
which shows the relationship between GSAS PGEs and GLAS data products. Many
ancillary files and utilities are required for GSAS processing. These have been omit-
ted in order to show an overview of GSAS.

Figure 4-1 GSAS Layers

L0
ExecutableL0

Executable

Common Libraries

Atmosphere Library Waveforms Library Elevation LibraryLevel 1A Library

Level 1A
 Manager

Level 1B and 2
Atmosphere Manager

Level 1B Waveforms
Manager

Level 1B and 2 Elevation
Manager

Science Algorithms Science Algorithms Science Algorithms Science Algorithms

L0proc
PGE

L1A PGE Atmosphere PGE Altimetry PGE

Utilitiy
PGEs

GSAS Detailed Design Document Design Overview

Version 5.0 Page 4-2 March 2006

Figure 4-2 Simplified GSAS Data Flow Diagram

GLAS_L1A

GLAS_L0proc

GLAS_Alt GLAS_Atm

GLA00
APIDs

GLA01 GLA02 GLA03

GLA05 GLA06

GLA12

GLA13GLA14

GLA15

ANC29

GLA07 GLA08

GLA09 GLA10

GLA04

GLA16GLAxx

ANC32

GLAS_GPS

ANC39

Create_GLA16

Design Overview GSAS Detailed Design Document

March 2006 Page 4-3 Version 5.0

4.3 Files

Throughout this document, files are referenced as one of two types: GLA or ANC.
GLA files are, for the most part, fixed-length, integer-binary format Product files con-
taining Level 0-2 GLAS science data. GLA16 is the single Level-3 Product and is
HDF-EOS formatted. GLA files are both input and output to GSAS. ANC files are
requisite multi-format ancillary files. Some are supplied by the science team, others
are received from external data providers. The prime difference between GLA and
ANC files are that GLA files are deliverable data products, whereas ANC files are
not. These files are detailed in the GLAS Data Management Plan and GLAS Data
Product Users Guide.

4.4 Science Algorithms

GSAS science algorithms are published in the Algorithm Theoretical Basis Docu-
ments (ATBD) provided by the GLAS Science Team. The resulting code is grouped
into four ATBD subsystems separated by scientific discipline. These subsytems, sci-
ence data products, and the science algorithm libraries are listed in Table 4-1.

The subsystems are designed such that data required by each subsystem is available
from a product (data file) written by a preceding subsystem. As a result there is very
little data dependence between the subsystems.

Associated with each ATBD subsystem is a corresponding Subsystem Manager.
These Managers use control input to determine what processes to execute within the
subsystem and what data to write.

4.5 Utilities

In addition to the core PGEs, there are several utility PGEs which perform various
data transformations and computations. These utilities use the same core library rou-
tines as the core PGEs. There are two main types of utilities:

• Utilities executed infrequently – based on static or near-static input. Examples
are:

- Reference orbit groundtrack file creation

- Create DEM file

Table 4-1 Subsystem, Libraries and Products

Subsystem Library Output Products

L1A Processing l1a_lib GLA01-04

Waveform Processing wf_lib GLA05

Atmosphere Processing atm_lib GLA07-11

Elevation Processing elev_lib GLA06,12-15

GSAS Detailed Design Document Design Overview

Version 5.0 Page 4-4 March 2006

- Ingest and reformat geoid file

- Create regional masks data set

- Create global and regional load tide grids

- Assist in verifying product content

- Assist in processing spacecraft test data

• Utilities executed routinely as part of daily production processing. Examples
are:

- Calculate granule start times and ascending node times

- Create level 0 index files

- Subset Meteorological data files

- Create Browse products

- Verify QA products

March 2006 Page 5-1 Version 5.0

Section 5

Foundation Libraries

The base level of GSAS software is implemented as a set of core libraries. These
libraries are coded in a generic manner such that all GSAS software can make use of
the code. This design maximizes code reuse and all inherent advantages.

Library code is implemented in separate directories and grouped by functional area.
A single makefile in each library directory will compile the code into a dynamically-
linked shared library. A “master” makefile will compile all the libraries and create the
final binaries in one step. See the GSAS User Guide for details on file layout and com-
pilation specifics.

There is a set of dependencies between the libraries. Order in which libraries are com-
piled is important since libraries may depend upon other libraries for support rou-
tines.This is not relevant if the developer uses the supplied “master” makefile, but
the developer should be aware that these dependencies exist. This is illustrated in
Table 5-1.

5.1 The Platform Library (platform_lib)

platform_lib is the most basic library in the foundation libraries. Nearly all GSAS
code uses routines from the platform library. The purpose is to provide consistent
datatypes across all GSAS software, to provide a place for storing constants, and to

Table 5-1 Library Inter-dependencies

To build... The following libraries are required...

platform_lib <none>

time_lib platform_lib

cntrl_lib platform_lib

err_lib platform_lib,

math_lib platform_lib

anc_lib platform_lib, cntrl_lib, err_lib, math_lib

prod_lib platform_lib, cntrl_lib, err_lib

file_lib platform_lib, cntrl_lib

geo_lib platform_lib, cntrl_lib, err_lib, math_lib, anc_lib

exec_lib platform_lib, cntrl_lib, err_lib, math_lib, anc_lib

GSAS Detailed Design Document Foundation Libraries

Version 5.0 Page 5-2 March 2006

provide compiler-dependent F90 routines. Modules included in the platform_lib are
described in Table 5-2.

5.2 The Control Library (cntrl_lib)

cntrl_lib provides control-related functions to GSAS software. Components include
routines for parsing “keyword=value” formatted files, string functions, user-inter-
face functions, and a common file control datatype. Modules included in the cntrl_lib
are described in Table 5-3.

Table 5-2 platform_lib Modules

Module Description

kinds_mod Defines the basic GLAS datatypes, for example 2 byte integers, 4 byte
integers, 4 byte reals, and 8 byte reals.

types_mod Defines common complex GLAS datatypes, including structures. (depreci-
ated)

const_glob_mod Defines common global constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_atm_mod Defines atmosphere-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_elev_mod Defines elevation-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_l1a_mod Defines L1A-related constants. These constants are initialized as parame-
ters or have values read from an ancillary file.

const_util Arguments for utility programs

const_wf_mod Defines waveform-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

lnblnk Returns position of the last non-blank character in a string. Provided for
those F90 implementation which do not support this function.

vers_platform_mod Version information for the library.

Table 5-3 cntrl_lib Modules

Module Description

centertext_mod Centers a text string within an 80 character padded string.

compare_kval_mod Compares keyvalues against label. Strings are converted to uppercase
before a comparison is performed. This ensures that keyvalues are not
case-sensitive.

doubleline_mod Prints an 80 character double line to the supplied IO unit.

fStruct_mod Defines a generic GLAS file info structure. Also contains routines to initial-
ize and print a file info structure.

Foundation Libraries GSAS Detailed Design Document

March 2006 Page 5-3 Version 5.0

5.3 The Error Library (err_lib)

err_lib provides status and error-related functions to GSAS software. err_lib is
designed to read messages from an ancillary file. Errors and status messages (hence-
forth referred as errors) are reported to an output ancillary file (if available) and to
standard output (stdout). Errors have negative numeric designations; status mes-
sages have positive designations. Errors are designed to be configurable as to the
severity of the error and frequency of printout.

Modules included in the err_lib are described in Table 5-4.

find_keyword_mod Searches for the provided keyword within a set of provided values.

getans Reads a character of input, and validates that input from a list of accept-
able values.

gsas_toupper Replacement subroutine for “toupper” which conflicted with an HDF-EOS
routine of the same name. Converts alpha characters to upper case.

keyval_mod Defines a keyword=value datatype.

multimenu_mod Returns a set of logicals based on user menu selection

parse_keyval_mod Parses keyword and value components from argument string.

read_line_mod Reads a line of input, skipping comments (#).

singleline_mod Prints an 80 character single line

strcompress Compresses multiple spaces to a single space within a string

strtrim Trims white space from around a text string

tolower Converts alpha characters to lower case

writebanner_mod Prints banner at start of processing

vers_cntrl_mod Version information for the library.

writebanner_mod Prints banner at start of processing

Table 5-4 err_lib Modules

Module Description

ANC06_mod Writes an error message to the ANC06 unit in a standard format. In order
to avoid cyclic dependencies, ANC06_mod will not use GLAS Error_mod
upon encountering an error (since GLAS Error WILL use ANC06_mod). A
result code will be returned, but the caller must act upon it, if necessary.

ErrDefs_mod Defines the GSAS error data structure.

ErrorBoot_mod Initializes the error to generic values before the ancillary error file is read.

Table 5-3 cntrl_lib Modules (Continued)

Module Description

GSAS Detailed Design Document Foundation Libraries

Version 5.0 Page 5-4 March 2006

5.4 The Math Library (math_lib)

math_lib provides standard math routines to GSAS software. Components include
bilinear interpolation and matrix multiplication. Modules included in the cntrl_lib
are described in Table 5-5.

ErrorInit_mod Perform initializations for the Error and Status function by extracting the
error variables from argument error strings. This routine does dynamic
array allocation so that the number of errors is not fixed. A routine is also
provided to print the parsed errors.

GLAS_Error_mod Receives an error number as an argument, looks up the error, writes the
error to ANC06 and stdout, and returns a severity code to the calling pro-
cess.

WriteError_mod Formats an error and writes to ANC06 and stdout.

compare_err Error comparison routine for qsort.

vers_err_mod Version information for the library.

Table 5-5 math_lib Modules

Module Description

c_bilin_interp_mod Calculates the value of properties at a point by doing a bilinear interpola-
tion of the 4 points straddling it.

c_linear_smooth_mod Implements a smoothing function over a linear array

c_matmul_mod Returns the product of two matrices.

c_matrix_smooth_mod Implements a smoothing function over an n x m matrix array

c_minmaxmean_mod Provides routines to compute statistics for the given parameter.

c_quadratic_mod Solves a quadratic equation up to rank of 4.

conversions_mod Provides routines to convert between and swap different datatypes.

onepass_avg_mod One-pass algorithm for accumulating data needed to compute the stan-
dard deviation without the problems that can be caused by roundoff errors
when using the simpler though numerically equivalent equation.

w_add2hst_mod Computes histogram bin index.

vers_math_mod Version information for the library.

w_add2hst_mod Computes histogram bin index.

Table 5-4 err_lib Modules (Continued)

Module Description

Foundation Libraries GSAS Detailed Design Document

March 2006 Page 5-5 Version 5.0

5.5 The Ancillary Library (anc_lib)

anc_lib provides routines to read and parse GLAS ancillary files. GSAS ancillary files
are of various formats. Some ancillary files contain relatively static data while others
contain dynamic data.

Modules included in the anc_lib are described in Table 5-6.

Table 5-6 anc_lib Modules

Module Description

anc01_met_mod Reads meteorological (met) header data into a global data structure.
Structures exist for two met header files. Also verifies the existence of
associated met data files and provides a routine to write the met header
information to stdout.

anc04_quat_mod Definitions for ANC04 Quarternions Matrix.

anc07_mod Parses an ANC07 file and calls specific routines to read each parsed sec-
tion.

anc07_atm_mod Reads and parses atmosphere-related constants from a constants ancil-
lary file.

anc07_glob_mod Reads and parses global constants from a constants ancillary file.

anc07_elev_mod Reads and parses elevation-related constants from a constants ancillary
file.

anc07_err_mod Reads and parses error constants from a constants ancillary file.

anc07_glob_mod Reads and parses global constants from a constants ancillary file.

anc07_l1a_mod Reads and parses L1A-related constants from a constants ancillary file.

anc07_stat_mod Reads and parses status constants from a constants ancillary file.

anc07_wf_mod Reads and parses waveform-related constants from a constants ancillary
file.

anc08_pod_mod Contains Precision/Predict Orbit Determination (POD) record length and a
flag to determine if POD is of predicted or precision quality.

anc09_pad_mod Contains Precision Attitude Determination (PAD) record length, public
data structure, availability flag, and routines to initialize and read PAD
records.

anc12_dem_mod Contains Digital Elevation Model (DEM) record lengths, unit number, pub-
lic LandMask, and routines to read, calculate and print the DEM values.

an c13_geoid_mod Contains the Geoid record length, public grid and routines to initialize and
read the geoid.

anc16_ltide_mod Contains the record length and unit of the load tide ancillary file.

anc17_otide_mod Contains the record length and unit of the ocean tide ancillary file.

anc18_stdatm_mod Reads and stores the standard atmosphere ancillary file.

GSAS Detailed Design Document Foundation Libraries

Version 5.0 Page 5-6 March 2006

anc22_track_mod Read and store anc22 type NOSE information

anc23_nose_mod Read and store anc23 type NOSE information

anc25_gpsutc_mod Reads and parses the GPS/UTC time conversion file.

anc27_surftype_mod Reads and stores the surface type file.

anc29_index_mod Reads, writes, and stores the GLAS_L0proc index file.

anc30_aer_mod Reads and stores the global aerosol map ancillary file.

anc31_trop_mod Reads and store the global aerosol trop map ancillary file.

anc32_gps_mod Reads, writes and stores the GLAS_L0proc GPS correlation file.

anc33_utc_mod Reads the UTC time conversion file.

anc35_ozone_mod Reads and stores the ozone file.

anc36_atm_mod Reads the atmosphere calibration file.

anc38_msf_mod Reads the atmosphere multiple scattering factor file.

anc41_ephim_mod Contains definitions for JPL ephemeral file.

anc45_meta_mod Contains definitions and routines for ANC45 product metadata templates.

anc46_meta_mod Contains definitions and routines for ANC46 anc metadata templates.

anc47_pds_mod Contains definitions and routines for PDS/EDS construction record.

anc51_srtm_mod Equivalent to SRTM tracker_reader module, which provides access soft-
ware for SRTM track files

anc52_corr_mod Reads and stores load range correction tables

anc_hdr_mod Reads and writes the limited header portion of selected ancillary files.

inst_state_mod Contains routines for instrument state change detection.

anc_hdr_mod Reads and writes the limited header portion of selected ancillary files.

vers_anc_mod Version information for the library.

Table 5-6 anc_lib Modules (Continued)

Module Description

Foundation Libraries GSAS Detailed Design Document

March 2006 Page 5-7 Version 5.0

5.6 The File Library (file_lib)

file_lib provides standard routines to open and close GSAS files using the passed file
info structures. Modules included in the file_lib are described in Table 5-7.

5.7 The Time Library (time_lib)

time_lib is the only GSAS source code implemented in C. It is an implementation of a
GSFC time library and used by GSAS with little to no modification. time_lib provides

Table 5-7 file_lib Modules

Module Description

CloseFile_mod Closes a file.

OpenFInFile_mod Opens an input file.

OpenFOutFile_mod Opens an output file.

parse_fname_mod Parses the standard GSAS file naming convention.

vers_file_mod Version information for the library.

GSAS Detailed Design Document Foundation Libraries

Version 5.0 Page 5-8 March 2006

routines for converting to/from various time formats. Modules included in the
time_lib are described in Table 5-8.

5.8 The Product Library (prod_lib)

prod_lib provides routines to read, write, and convert GLAS products. The routines
(and concepts) are fully described in the Common Functionality section. Modules
included in the prod_lib are described in Table 5-9 (where xx = a GLAS product num-
ber [01-15]).

Table 5-8 time_lib Modules

Module Description

dateinterface Has routines for the following functions:
-add two arrays holding times into a third array
-add a yymmdd and a day
-add a yyyymmdd and a day
-find the difference between two yymmdd's in days and seconds
-find the difference between two yyyymmdd's in days and seconds
-convert between yyyymmdd, hms, mjd, fday, and mjdsec
-convert yymd fday to J2000 days and fday
-convert J2000 days and fday to yymd fday
-convert yymmdd or yyymmdd to yyyymmdd
-convert yyyymmdd to yymmdd
-convert mjd to yymmdd
-convert mjd to yyyymmdd
-convert yymmdd to mjd
-convert yyyymmdd to mjd
-convert hhmmss to fday
-convert fday to hhmmss
-convert fday to hm with decimal seconds
-convert yyyymmdd to ddd
-convert yyyymmdd to yyyyddd
-convert yyyyddd to yymmdd
-convert mjd to mjdsec
-convert mjdsec to mjd
-convert mjdsec to sec
-check if yyyy is a leap year

j2000to19char_mod Converts between J2000 seconds and 19 character ASCII representa-
tions.

vers_time_mod Version information for the library.

Table 5-9 prod_lib Modules

Module Description

GLA00_mod Contains routines for reading GLA00 APIDs.

GLAxx_mod Contains routines for reading and writing GLAxx product data structures.

Foundation Libraries GSAS Detailed Design Document

March 2006 Page 5-9 Version 5.0

5.9 The Exec Library (exec_lib)

exec_lib contains high-level routines which are common to each of the GSAS PGEs.
Much of the code which was in the original single executable has been modified and
moved into this library. Modules included in the exec_lib are described in Table 5-10.

GLAxx_alg_mod Contains public data structures for GLAxx algorithmdata and routines to
initialize and print the data structure.

GLAxx_prod_mod Contains public data structures for GLAxx product data and routines to ini-
tialize print the data structure.

GLAxx_scal_mod Contains public data structures for GLAxx scale data and routines to ini-
tialize and print the data structure. Also contains routines to convert from
product units to algorithm units and the reverse.

GLAxx_Pass_mod Passes common data from a lower-numbered product/algorithm data
structure to higher-numbered product/algorithm data structures.

GLAxx_print_mod Prints product data structures in integer/floating point format (as opposed
to hexadecimal).

GLAxx_flags_mod Contains routines for packing and unpacking GLAxx flags.

common_flags_mod Contains routines for packing and unpacking common flags.

common_hdr_mod Contains routines to read and write common elements of the product
headers.

get_numhdrs_mod Searches through product headers to find number of headers.

prod_def_mod Contains record sizes for all GLAxx products.

qap_version_mod Write qap version to qap file

vers_prod_mod Version information for the library.

Table 5-10 fexec_lib Modules

Module Description

C_CalcNrg_mod Calculate the energy of the received and transmitted pulses. Here
because it is shared between two subsystems.

CheckOutput_mod Loops through the file type structures to determine if any more output is
requested.

CloseFiles_mod Closed any opened files, based on file control structure.

CntlDefs_mod Initializes common control definitions.

MainInit_mod Performs common initialization functions.

MainWrap_mod Performs common wrap-up functions.

Table 5-9 prod_lib Modules (Continued)

Module Description

GSAS Detailed Design Document Foundation Libraries

Version 5.0 Page 5-10 March 2006

OpenFiles_mod Opens requested files, based on file control structure.

ReadAnc_mod Reads ancillary files, based on file control structure.

ReadData_mod Reads data from opened files in a time-synchronous fashion.

StdCntl_mod Parses common control instructions from a Control files.

Write_AncVer_mod. Writes ancillary file version info to ANC06.

Write_LibVer_mod Writes library version info to ANC06.

C_Retreive_HiRes_D
EM_mod

Retrieves surface elevation from high resolution DEM data source

c_nose_mod Contains routines to assigning data to NOSE rectangles.

check_out_time_mod Utility function for verifying continuity of time on output data products.

check_recndx_mod Utility function for comparing start/stop times of granules.

com_hdr_update Updates the header data structures for product files.

fCntl_mod Defines file control structures.

get_fileindex_mod Utility function for determining file type from filename.

get_secstart_mod Finds start of control file section.

parse_filecntl_mod Parses file information from control file.

passid_mod Holds passid information parsed from the control file.

pastendofperiod_mod Utility routine to determine if current time is past the end of the period.

set_inst_state_mod Sets the Instrument State flag.

vers_exec_mod Version information for the library.

Table 5-10 fexec_lib Modules (Continued)

Module Description

March 2006 Page 6-1 Version 5.0

Section 6

Common Functionality

GSAS code was designed to maximize software reuse. The foundation libraries pro-
vide a code base which the developer can use to ensure consistency and maximize
code reuse among GSAS PGEs. The libraries provide standardized routines for such
things as parsing control files, reading constants files, and reporting error/status
messages. By following GSAS conventions, PGEs can basically take advantages of
these services “for free.” The previous section introduced the components of the
foundation libraries. This section describes the functionality provided by these librar-
ies.

6.1 Control File Parsing

GSAS PGEs are designed to use Control files as the interface between GSAS and the
user (or controlling process). Control files provide dynamic control information to
PGEs.

PGEs are designed to take the name of the control file passed as a command-line
argument during each invocation of the PGE. Most PGEs should terminate with a
fatal error if the command-line argument is missing, the specified file does not exist,
or the file is unreadable. The exception to this rule is when the PGE provides a rudi-
mentary user-interface when invoked without a control filename. GLAS_Reader and
GLAS_APID, utilities, are currently the only instances of this exception.

GSAS control files are designed to be part of a larger control file used by one or more
PGEs. The larger control file includes sections which identify the PGE that will per-
form the task requiring the inputs contained in the section. Each section is bounded
by an "=" sign in column 1, followed by the PGE name that requires the control
inputs. Exact section names will be shown in the PGE-specific control file section of
this document.

All GSAS control files are created in standard GSAS “keyword=value” format. This
format is text-based and consists of a line containing a keyword/value pair delimited
by an equal sign (=). The ordering of the keywords is not relevant but should follow a
convention for consistency. Multiple instances of certain keywords are allowed. The
keyword is not case sensitive. Spaces are allowed, but not required. Comment lines
must be prepended by a “#” character. The keyword is limited to 255 characters; the
value is limited to 255 characters.

PGE sections within a control file contain both common and process-specific informa-
tion. The process-specific portions of control files will be provided within the docu-
mentation for each specific PGE. This section will document the common elements of

GSAS Detailed Design Document Common Functionality

Version 5.0 Page 6-2 March 2006

the control files. Within a control file section, some information is required, other is
optional. Required single-instance keywords include:

Optional multiple-instance keywords include:

6.1.1 PASSID Specification

A PASSID section is required in the control file when creating GLA products. There
should be one instance of the following keyword/values for all tracks which fall
within the minimum/maximum time of the data being processed. This information
is required for GLAS_L1A, GLAS_Alt, and GLAS_Atm. This information is NOT
required for GLAS_L0proc or other utilities.

PASSID=revolution_num<sp>passid<sp>start_time<sp>stop_time<
sp>equator_crossing_lon<sp>nose_path_number.

Descriptions of the PASSID elements are provided in Table 6-3.

Table 6-1 Required Single-Instance Keywords

Keyword Value

TEMPLATE_NAME= Name of the control file template.

EXEC_KEY= Unique (per day) execution key

DATE_GENERATED= Date the control file was generated.

OPERATOR= Operator who generated the control file.

PGE_VERSION= Version number of the target PGE.

Table 6-2 Optional Multiple-Instance Keywords

Keyword Value

PASSID= Pass-related information

TRACK= Track [number start_time stop_time]

INPUT_FILE= Input file [filename start_time stop_time]

OUTPUT_FILE= Output file [filename start_time stop_time]

WRITE_CONST= Signals that the specified constants should be written to ANC06.

Table 6-3 PASSID Control Line Elements

Element Description

revolution_num integer, containing the auto-incrementing rev number.

passid 11-byte character, further described below.

start_time double-precision float, containing J2000 UTC time in seconds.

stop_time double-precision float, containing J2000 UTC time in seconds.

Common Functionality GSAS Detailed Design Document

March 2006 Page 6-3 Version 5.0

The eleven-byte passid field will be treated as follows: prkkccctttt. Descriptions of
each element are provided in Table 6-4.

6.1.2 Input/Output File Specification

Input and Output files are required to be designated using the GSAS-standard nam-
ing convention defined in Appendix A. The type of each file specified is determined
by parsing specific components of the filename which are required by all of the nam-
ing methods defined in the specification. These common components of all filenames
are:

HHHxx_mmm...ff.eee

(where: HHH is the type identification, xx is the type id number, mmm is the release
number, ff is the file sub-type, and eee is the file extension.)

GSAS software uses the type identification, the type id number and the file sub-type
to determine what type of file is specified in the control file. The filetype-parsing rou-
tines are not case-sensitive when determining the type of file specified. However, the
filenames are case-sensitive during file opening and creation.

All files are required to be delimited by start and stop times. These times are floating
point values specified on the control line as J2000 time in seconds. On both input and
output, records are skipped until the time in the current record is greater than or
equal to the specified start-time and less than or equal to the specified stop-time.
Static ancillary files are required to have start-times and stop-times present for con-
sistency, but these are currently ignored.

The general formats for an input and output file specifications are:

INPUT_FILE=file_name<sp>start_time<sp>stop_time
OUTPUT_FILE=file_name<sp>start_time<sp>stop_time

equator_crossing_lon float, containing the equator crossing longitude.

nose_path_number integer, containing the NOSE path number.

Table 6-4 passid Field Description

Field Description

p repeat ground track phase (integer, length=1)

r reference orbit number (integer, length=1)

kk instance (integer, length=2)

ccc cycle (integer, length=3)

tttt track (integer, length=4)

Table 6-3 PASSID Control Line Elements (Continued)

Element Description

GSAS Detailed Design Document Common Functionality

Version 5.0 Page 6-4 March 2006

Additionally, GLA product file entries should contain segment and version informa-
tion. This information is specified in the format:

INPUT_FILE=file_name<sp>start_time<sp>stop_time<sp>gran_rel
_num<sp>gran_ver_num<sp>gran_segment

OUTPUT_FILE=file_name<sp>start_time<sp>stop_time<sp>gran_re
l_num<sp>gran_ver_num<sp>gran_segment

Segment and version information fields are described in Table 6-5.

Files with INPUT_FILE and OUTPUT_FILE keywords must be listed in chronologi-
cal order based on start and stop times. The start time of one file may overlap the stop
time of another. In this case, data within the overlapping range will be written to the
first file and not the second.

6.1.3 Input Data Time Selection

As referenced in the Control File section, all files are required to be delimited by start
and stop times. PGEs which support time selection will skip that data which are out-
side the limits defined by start and stop times. This data will be read, but not pro-
cessed. Additionally, given the case of multiple input files of the same type, the PGE
will seemlessly skip from one file to the next when all data from the current file has
been read (or skipped via time selection).

Certain input ancillary files do not support input time selection but require, none the
less, start and stop times in their control file entry. This was a design decision
intended to promote consistency within the control file content. The start and stop
times for these ancillary files should encompass the entire time range of the input
data.

6.1.4 Output Data Time Selection

As with input files, all output files are required to be delimited by start and stop
times on their control file entry. PGEs which support time selection will not write that
data which are outside the limits defined by start and stop times. Additionally, given
the case of multiple output files of the same type, the PGE will seemlessly skip from
one file to the next when the current data time falls outside the range of the current
output file. It is important to note that input data time selection and output data time
selection are completely independent of one another. There is, however, a practical

Table 6-5 File Segment and Version Fields

Field Description

gran_rel_num granule release number (CCB controlled, mmm in filenaming convention.)
Character max length of 20.

gran_ver_num granule version number (Auto-incrementing, nn in filenaming conven-
tion). Character max length of 20.

gran_segment orbit segment of the granule (if more that 1 segment, use 0).Character
max length of 1.

Common Functionality GSAS Detailed Design Document

March 2006 Page 6-5 Version 5.0

relationship between the two, since output data for a particular time cannot be writ-
ten if no input data for that time are read (or specified).

6.1.5 Execution scenarios

Most core PGEs permit multiple execution scenarios. Certain sets of computations
have been grouped together by the software designers. Execution of these sets can be
specified via specific execution flags with the PGE control file. The detailed docu-
mentation for each PGE specifies what execution flags are available and the processes
they control. Additionally, there are dependencies between input file type, output file
type, and the execution flags. These dependencies define execution scenarios, which
will be described in the respective PGE detailed documentation.

6.2 ANC07 Constants Files

ANC07 files are used to provide GSAS with static, change-controlled parameters pro-
vided by the Science Team and used during processing of GLAS data. These parame-
ters were carefully selected such that these parameters could be modified without
forcing a recompilation of the processing software. It is critical that these files are
tightly change-controlled since unapproved modification could result in erroneous or
inconsistent data being generated during the creation of the GLAS Products.

There are several types of ANC07 files. These types include a global constants file, an
error file, and constants files specific to each of the science algorithm categories.

Constants files are specified as input files within a particular PGE’s control file. The
global constants file and the error constants file are required for all executables.

GSAS ANC07 files are delimited by section identifiers which differ (by design) from
control files section identifiers. Each section is bounded by the section name and an
"=". The section delimiters are defined as follows:

BEG_OF_STATUS=
...Status section contents...
END_OF_STATUS=

BEG_OF_ERROR=
...Error section contents...
END_OF_ERROR

BEG_OF_GLOBALS=
...Global constants section contents...
END_OF_GLOBALS

BEG_OF_ATM=
...Atmosphere constants section contents...
END_OF_ATM

BEG_OF_ELEV=
...Elevation constants section contents...
END_OF_ELEV

GSAS Detailed Design Document Common Functionality

Version 5.0 Page 6-6 March 2006

BEG_OF_L1A=
...L1A constants section contents...
END_OF_L1A

BEG_OF_UTIL=

...Utilities constants section contents...

END_OF_UTIL

All GSAS ANC07 files are created in standard GSAS “keyword=value” format. This
format is text-based and consists of a line containing a keyword/value pair delimited
by an equal sign (=). The ordering of the keywords is not relevant but should follow a
convention for consistency. Multiple instances of keywords are not allowed. The key-
word is not case sensitive. Spaces are allowed, but not required. Comment lines must
be prepended by a “#” character. The keyword is limited to 255 characters; the value
is limited to 255 characters.

6.3 Invalid Values and Error/Status Reporting

This section documents the use of standardized methods of dealing with invalid data
and error/status conditions.

6.3.1 Invalid Values

Not all data received from GLAS will be suitable for science processing. In addition,
given the nature of the raw telemetry packets, some data may be missing. The con-
cept of an “invalid value” is used to signify that data is invalid or missing and should
not be used for processing. Invalid values are datatype-specific values which are
defined in the GLAS global constants module. These variables are assigned to Prod-
uct variables in order to indicate invalid or missing data. These values are defined in
Table 6-6. Great care should be taken to avoid using an invalid value during a calcu-
lation. Additionally, great care must be taken by both the programmer and data user
to determine if the variable in question is defined as potentially invalid. One can only
consider data to be invalid if the product documentation defines that variable as
potentially invalid and the variable has the appropriate invalid value respective to its
datatype.

Table 6-6 Invalid Values

Datatype Invalid Value

1 byte integer 127

2 byte integer 32767

4 byte integer 2147483647

4 byte real 3.40282E+38
x7F7FFFFF

8 byte real 1.797693094862316E+308
x7FEFFFFFFFFFFFFF

Common Functionality GSAS Detailed Design Document

March 2006 Page 6-7 Version 5.0

6.3.2 Exit Status

All GSAS PGEs are required to return an exit status indicating success or failure of
the process. This status is returned through an operating system call and can be que-
ried by other operating system processes. The supported exit status codes are gFA-
TAL=3 and gNO_ERROR=0.

Note that the Exit status was designed to return numbers consistent with the GSAS
error/status reporting facility’s error severity values. However, the exit status codes
are but a subset of the GSAS error severity codes.

6.3.3 Error and Status Reporting

GSAS uses a common error/status reporting facility. This ensures that error/status
reporting is handled in a consistent manner throughout the software. This facility is
based on the ANC07 error file and is configurable by the user.

An important related point is that GSAS is designed such that only the main PGE
routine can terminate processing. Subroutines are not allowed to terminate process-
ing, but should indicate a fatal error by passing the appropriate error severity code
back to their calling processes. The calling process can then exit with the correct exit
status result code.

The ANC07 error file is in standard GSAS “keyword=value” format. This format is
text-based and consists of a line containing a keyword/value pair delimited by an
equal sign (=). The keyword is not case sensitive. Spaces are allowed, but not
required. Comment lines must be prepended by a “#” character. As with other
ANC07 files, the sections for error and status must be delimited by section identifiers.
Identifiers for each section are listed below.

BEG_OF_STATUS=
...Status section contents...
END_OF_STATUS=

BEG_OF_ERROR=
...Error section contents...
END_OF_ERROR

Table 6-7 PGE Exit Status Codes

Value Description

0 Process completed with no errors.

3 Process failed.

GSAS Detailed Design Document Common Functionality

Version 5.0 Page 6-8 March 2006

The format of the error/status content is defined in Figure 6-1. The keyword can have

the value of “ERROR” or “STATUS” and identifies if the line contains an error or sta-
tus entry. The value is a text string with the specific format defined in Table 6-8.

There is a specific error number for each error/status value. Within the ANC07 file,
these error numbers are numerically split into multiple sub-sections. Errors have neg-
ative numeric designations; status messages have positive designations.

Each major portion of the GSAS software supported by the specific error file begins at
a different subsection number. Within a subsection, error numbers must be consecu-
tive The use of sub-sectioning is optional for a simple error file. The GSAS ANC07
error file has 5 subsections. Table 6-9 lists each of the subsections and their starting
error/status number.

GLAS error messages are designed to inform a user when the software has encoun-
tered a problem. GLAS status messages are designed to assist the user in observing
the flow of the processing. Status messages usually alert the user when the software
begins execution of a subroutine. A great deal of flexibility was designed into this
software in order to allow the user to customize the error/status display.

KEYWORD=nnnnnnxttxsxffffff

Figure 6-1 Error Ancillary File Format

Table 6-8 Error String Format

Character Positions Description

n 1-6 Error code (must be sequential within a section)

x 7,58,60 Space character (delimiter)

t 8-57 Message

s 59 Error severity (see Table 6-10)

f 61-66 Frequency of reporting (message is reported on 1st occurrence, then
every f’th time)

Table 6-9 Error Sections

Starting Numbers Description

-10001/10001 General error/status.

-20001/20001 L1A error/status.

-30001/30001 Waveform error/status

-40001/40001 Atmosphere error/status

-50001/50001 Elevation error/status.

Common Functionality GSAS Detailed Design Document

March 2006 Page 6-9 Version 5.0

The user may modify error and status entries in order to configure the severity of the
error and frequency of printout. The user is cautioned to seek GLAS change-control
board approval before modifying the severity of an error. GSAS software will termi-
nate processing upon receipt of a fatal severity code. Thus, modifying the severity
may enable the software to execute in a non-tested mode.

The severity number controls how the GLAS software reacts when an error occurs.
The 4 levels of severity are described in Table 6-10. GLAS software will terminate on
a Fatal error. The frequency number controls how often an error message is printed
out. The first instance of a specific error is always printed. Subsequent instances are
printed out at the frequency specified. All instances are counted and the number of
occurrences printed in an output summary.

6.4 ANC06 Metadata/Log File

GSAS PGEs create ANC06 output files which contain processing information, error
messages, and status messages. These files are in a modified version of the GSAS key-
word=value format. The format of an ANC06 entry is:

[time] [keyword]=[value]

The first field [time] is the time in UTC seconds. The time is that of the data being
processed when the entry was written (if no data have been processed, the time may
be 0 or an invalid value). The time is a GSAS-standard time representation (UTC sec-
onds). The second field [keyword] is a keyword describing the type of information
presented. The third field [value] is a formatted text message describing the event.
Comments are allowed in order to group messages logically. Comment lines are pre-
pended by the pound (#) sign.

The value field contains the actual message and its format varies dependent on the
type of message displayed. Error/Status values, for example, have several subfields.
The first field is the numeric error/status code. The second field is the error severity
(see Section 7 for details). The third field is the name of the routine which reported
the error. The fourth field is the standard error text with optional detailed text. The
format of the subfields within the value field is shown below:

error_num, severity, calling_routine, std_message opt_text

Table 6-10 Error Severity Codes

Severity Description

0 No error

1 Information/status

2 Warning

3 Fatal

GSAS Detailed Design Document Common Functionality

Version 5.0 Page 6-10 March 2006

6.5 Product Internal Data Storage, Conversion and I/O

The GSAS I/O and unit conversion process is sufficiently complex and important to
describe in detail.The design of this process is what allows GSAS to meet the repro-
cessing requirements.

First, some definitions: (1) algorithm data (in units for algorithm use) are that data
which are in a form most favorable for display and calculation; (2) product data (in
units for I/O) are data which are in a form most favorable for machine independence
and storage efficiency. It is important to understand the process by which algorithm
data gets transformed into product data (and product data gets transformed back
into algorithm data).

6.5.1 Product Modules

There are several different types of modules involved in the product conversion pro-
cess. These modules were briefly described in the prod_lib section but will be
detailed here. Table 6-11 (where xx = a GLA product number [01-15]) defines each
component. All modules are designed with software reuse as a primary goal.

Table 6-11 Product Module Functionality

Module Functionality

kinds_mod defines basic data types (4-byte integer, 8-byte real, etc.)

types_mod defines any global data structures

GLAxx_prod_mod defines product-specific (where xx=product number)
record format and associated global product data struc-
ture. Each module also includes one subroutine to initialize
the product data and another to print the data in a human-
readable form.

GLAxx_mod contains routines to read (ReadGLAxx) and write
(WriteGLAxx) the product data structure in binary format.

GLAxx_alg_mod defines product-specific global algorithm data structure.
Each module also includes one subroutine to initialize the
algorithm data and another to print the data in a human-
readable form

GLAxx_scal_mod defines product-specific global scaling data structure. Also
includes subroutines to initialize the scaling data, convert
from product to algorithm format (GLAxx_P2A), convert
from algorithm to product format (GLAxx_A2P), and print
the scaling data in a human-readable form.

common_flag_mod contains routines for packing/unpacking common flags.

GLAxx_flag_mod contains routines for packing/unpacking product-specific
flags.

Common Functionality GSAS Detailed Design Document

March 2006 Page 6-11 Version 5.0

6.5.2 Internal Product Data Storage

Data for each product are stored internally in two different formats. For each prod-
uct, there is one global data structure containing product data. These data are in the
exact same format as the integer-binary data written to and read from GLAS product
files. There is also a global data structure for each product containing algorithm-for-
mat (mostly double precision) data for use in scientific calculations. The product
modules and the GSAS Managers use these public data structures. However, data are
passed from the Managers to the science algorithms via the argument list.

6.5.3 Product Input/Output

GLAxx product files are defined as integer-binary fixed-length files. These product
files will contain text header records (as described later) followed by binary data
records.

The GLAxx_prod_mod defines a specific data structure which exactly matches the
format of each data record of the appropriate product file. This data structure is used
in an unformatted direct-IO statement to read/write a data record from/to disk.

When multiple products are read simultaneously, a data record from a lower-num-
bered product is read before the data from a higher-numbered product. This is
important to the concept of “Pass-thru” (explained in Section 6.5.5).

6.5.4 Product-to-Algorithm Conversion (P2A)

When a data record is read from disk into memory, the data are stored in the product
data structure. In order to be useful in scientific calculations, the data must be con-
verted from product format into algorithm format. The process is called “Product-to-
Algorithm Conversion”.

When a record of data is read, the values are stored in a product data structure. The
appropriate algorithm data structure is initialized to either zeros or invalid values, as
specified by the product documentation.

Each product variable is checked for an invalid value. If the data is determined to be
invalid, no conversion is performed. As a result of initializing the algorithm structure
appropriately, if the product variable is invalid, the algorithm value, by default, con-
tains an invalid value.

If the values are determined valid, the data will be converted from product to algo-
rithm format by one or more of the following processes.

• converting to unsigned (if necessary)

• scaling by a scale factor:
Algorithm_Value = Product_Value* Scale_Factor

• unpacking bits into individual flags.

For the most part, scaling is performed by multiplying the integer product value by a
floating point scale factor and storing the result in a double-precision algorithm vari-
able within the global algorithm data structure. The exceptions to this rule are flags,

GSAS Detailed Design Document Common Functionality

Version 5.0 Page 6-12 March 2006

which are unpacked with specific subroutines and a few variables which are used as
integers by the science algorithms.

6.5.5 Pass-Thru

After a product is read and converted to algorithm format, common data must be
passed from lower-numbered product/algorithm data structures to higher-num-
bered product/algorithm data structures. This pass-thru process enables re-process-
ing to be treated the same as normal processing. It is important that both product and
algorithm data is passed. The subsystem managers (discussed below) are designed to
take full advantage of the pass-thru process.

6.5.6 Managers

The subsystem managers ‘use’ the global algorithm data structures. If an intermedi-
ate conversion is necessary, the managers create local variables. The managers pass
the appropriate variables to the science algorithms via the argument list. (L1A is an
exception to this since the L1A routines basically use the entire data structures.) Spe-
cific algorithms are executed based on the state of control flags received from the PGE
in order to allow for re-processing.

A key concept is that the manager uses the variable in the highest-numbered product
for which it is responsible. For example, if the same variable is on GLA05 and GLA06,
the elevations manager always uses the variable from the GLA06 algorithm struc-
ture, no matter if GLA06 is read for input or not. The pass-thru process ensures that
the value is always there.

After a science algorithm returns execution to the manager, the manager performs its
own pass-thru function. It copies any local variables back to the algorithm data struc-
ture and then passes any modified algorithm variables to the higher-numbered prod-
uct/algorithm data structures. This is essentially a repeat of the pass-thru process
described in 6.5.5, except the candidate variables are limited to those modified by
each respective science algorithm.

6.5.7 Algorithm to Product Conversion (A2P)

After the manager has finished executing science algorithms, each algorithm struc-
ture must be converted back to product data. This is essentially a reverse of the P2A
process.

First, the product structure is initialized. Then, each algorithm variable is checked for
an invalid value. If the variable is determined valid, the data will be converted from
algorithm to product format by one or more of the following processes.

• unscaling by a scale factor:
Product_Value = nint(Algorithm_Value/Scale_Factor)

• unpacking bits into individual flags.

For the most part, scaling is performed by taking the nearest integer of the double
precision algorithm value divided by a floating point scale factor. The result is stored
back into an integer product variable within the global product data structure. The

Common Functionality GSAS Detailed Design Document

March 2006 Page 6-13 Version 5.0

exceptions to this rule are flags, which are packed with specific subroutines and a few
variables which are used as integers by the science algorithms.

6.6 Product Headers

GSAS Products begin with ASCII header records containing information regarding
the processing which created the Product and the data contained within. These
header records are exactly the same size as a Product data record and contain ASCII
information in a slightly modified KEYWORD=VALUE format. In order to conserve
space on the product, the header entries are not delimited by the record length, but
by a semi-colon (;) and linefeed (ASCII 10).

By design, the first two header entries are the record length and number of header
records. This allows product readers to verify the record length and jump directly to
the first data record, if necessary. Most of the remaining information within the head-
ers is directly applicable to the generation of metadata files for EOS ingest.

Although the majority of entries in the Product headers are common to all products,
GSAS Products may contain special and specific header entries. This is handled by
product-specific header modules (GLAxx_hdr_mod). The common elements of the
Product Headers and associated subroutines are contained within a common header
module (common_hdr_mod). Most of the header software is contained within the
GSAS product library. The exception is the com_hdr_update routine, which is con-
tained within the exec_lib since it needs to interface more directly with the PGEs.

When a product file is opened for output, GSAS initializes the product’s header infor-
mation and determines how many records will be needed to contain the header data.
Many of the header entry values are already known at this time and can be filled in
immediately. A fixed number of bytes is reserved for those entries whose values must
be filled at a later time. GSAS writes the initial header records to the product and sets
the file pointer to the first data record. At the end of a granule, any of those unfilled
header records are set to a value and the header records are re-written at the top of
the Product. Care is taken to make sure that the header records have not grown large
enough to overwrite any Product data.

6.7 Summary

Again, it is important for developers to realize the capability built into the GSAS
libraries. Use of the PGE model presented in the next section can lead to significant
reductions in development time and much greater consistency throughout the GLAS
software.

GLAS_Reader was written partially as an example for the capability gained through
using the libraries. With only about 1300 lines of heavily commented code (and most
other lines subroutine calls), GLAS_Reader uses the product library routines to read
and print nearly any GLAS file currently in use. The services it uses include:

• Full control file parsing.

GSAS Detailed Design Document Common Functionality

Version 5.0 Page 6-14 March 2006

• Time-selective processing.

• Multi-granule processing.

• Full error reporting.

• Full I/O support.

• Full ANC06 logging.

Additionally, a fairly significant portion of the 1300 lines includes a rudimentary user
interface which allows a user to interact with GLAS_Reader without requiring a con-
trol file. This shows that the use of the libraries does not necessarily restrict the devel-
oper to follow the conventional GSAS model. The model provides developer with the
flexibility to handle special requirements within the basic development GSAS model.

March 2006 Page 7-1 Version 5.0

Section 7

GSAS Core PGEs

7.1 Function

GSAS core PGEs comprise the topmost level of the GSAS data processing software.
These executables are responsible for controlling the data processing. They perform
initializations, set constants, read ancillary data, handle data input and output, and
provide a global error facility. The basic design of all GSAS core PGEs is the same. As
such, this section will document a generic PGE design. Changes from this basic
design will be documented in the section for each specific PGE.

7.2 Requirements

Most requirements are PGE-specific and defined in the appropriate PGE section.
There are several high-level requirements which the core PGE approach satisfies.

• A control file will be used to control processing and specify input and output
files.

• Files will be opened and closed within the PGE and its associated managers.
Processing routines will not open or close files.

• Common values will be used to designated missing or invalid data on GLAS
products.

• A common error/status facility will be used.

• All error/status messages will be logged and written to a log file (ANC06).

• Version information will be logged.

• Summary statistics such as number of records read/written and the number
occurrences of each type of status/error will be computed and logged.

• Reference data subject to change will be stored and retrieved from change-
controlled ancillary files (ANC07).

7.3 Approach

• The system start and stop will be controlled by each respective executable at
the uppermost level.

• Processing will be performed one record at a time, though individual sub-
systems may buffer multiple records before processing. Multiple input prod-
ucts will be time-synchronized. (GLAS_L0proc is an exception to this.)

• Control flags will determine which subsystem or subsystem process will be
executed.

• Input and output data will be delimited by start and stop times.

GSAS Detailed Design Document GSAS Core PGEs

Version 5.0 Page 7-2 March 2006

• The system will provide for partial processing and reprocessing scenarios.

• In order to maximize code reuse and ease-of-use, PGEs will be designed to use
standard facilities provided by the GSAS libraries.

7.4 Design

Figure 7-1 shows the top-level structure chart of a generic GSAS core PGE. The basic
algorithm for a GSAS PGE is:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read static ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Until all specified data are processed...

- Read Data (ReadData)

- Process Data (Manager)

- Write Data (Manager)

• Close all files and generate summaries (MainWrap)

The main routine for a GSAS PGE is local to the PGE - in other words, the source code
is located within the PGE subdirectory, not within a library. The main PGE routine
will perform other functions besides calling the appropriate subroutines. Code
within the main routine will

• Initialize flags indicating start and end of processing

• Write its version number

• Write any associated subsystem version info

• Set a status code indicating success or failure on program termination

Additionally, in the case of a PGE with no Manager, subroutine calls to processing
code and actual data transformations may be located within the main routine.

Although not shown on the structure charts, nearly every GSAS routine calls
glas_error, the standard error facility, to report error and status messages.

Subsequent sections will identify and explain the functionality of each of the struc-
ture chart elements.

GSAS Core PGEs GSAS Detailed Design Document

March 2006 Page 7-3 Version 5.0

7.4.1 MainInit

MainInit is an element of the exec_lib. The MainInit structure chart is show in Figure
7-2. MainInit performs the following functions:

• Initializes the ANC06 output channel to stdout in order to display initializa-
tion error messages to the console.

• Initializes the default error subsystem. (error_boot)

• Initializes the standard file control structures. (fCntl_Init)

• Initializes Product scaling values. (GLAxx_scal_init)

• Initializes Algorithm data structures to default values. (GLAxx_alg_init)

• Initializes Product data structures to default values. (GLAxx_prod_init).

7.4.1.1 Error_Boot

The error_boot routine is part of the error_lib. It initializes the glas_error facility with
a “bootstrap” set of error codes in order to facilitate error handling during the initial-
ization and file-opening phases of execution. These “bootstrap” errors will be over-
written once the ANC07 error file is read later in execution.

7.4.1.2 fCntl_Init

fCntl_Init is within the fCntl_mod entry of the exec_lib. fCntl_mod contains both file-
related parameters and subroutines. These parameters include:

• Maximum number of file types

Figure 7-1 Top-Level Structure Chart

Core PGEMainInit

eCntrl_Init

GetControl

OpenFiles

Print_Cntl ReadANC

Write_AncVer

ReadData

Manager(s)

MainWrap

Write_LibVer

GSAS Detailed Design Document GSAS Core PGEs

Version 5.0 Page 7-4 March 2006

• Maximum number of files per type

• Numeric indices for each filetype

• ASCII representation for each filetype

• Control file name

• An structure of arrays containing information regarding each file used in pro-
cessing.

fCntl_Init initializes the file information structures with information regarding
direct/formatted access, record lengths, multi-granule flags, granule index, and cur-
rent record number.

This module is very important to a maintenance programmer if he should need to
add a new file type to the GSAS software. Be aware, that the order of the definitions
within fCntl is critical. Changes in one internal data structure should be mirrored by
like changes within the other associated data structures. Also be aware that grouping
of the file types is important. New products should be added within the product sub-
section (GLA01-GLA16). Likewise, new APIDs should be added within the APID
subsection (APID12-APID1984).

7.4.1.3 GLAxx_scal_init, GLAxx_prod_init, GLAxx_alg_init

These routines are elements of the prod_lib. There exist a set of these routines for
each GLAS product. The scal_init routines initializes a product-specific data structure
to scale values which are used when converting between product and algorithm

Figure 7-2 MainInit

MainInit

GLAxx_scal_init

error_boot

fCntl_Init

GLAxx_alg_init

GLAxx_prod_init

GSAS Core PGEs GSAS Detailed Design Document

March 2006 Page 7-5 Version 5.0

units. The prod_init and alg_init routines initializes the respective product and algo-
rithm data structures to initial and/or invalid values.

7.4.2 eCntl_Init

eCntl_Init is a routine within eCntl_mod, which is local to each PGE. eCntl_mod con-
tains the local execution flags which the Manager uses to control process flow.
eCntl_Init initializes these flags. These flags are later set by GetControl based on val-
ues within the control file.

7.4.3 GetControl

GetControl is a routine local to each specific PGE. This routine reads and parses the
control file. It’s structure chart is in Figure 7-3. GetControl performs the following
functions:

• Initializes standard control structures (init_StdCntl)

• Opens the control file. (OpenCF)

• Reads the control file until it finds the specified section header.

• Reads the section contents, parsing local and standard (parse_StdCntl) control
file entries.

• Sets control flags based on control file entries.

• Closes the control file at the end of the section.

• Performs sanity-checking.

Of particular importance in the routine is the fact that it parses control entries which
are specific to each individual PGE. Execution and option flags are defined in a local
eCntl module. GetControl sets these flags based on parsed control values. If a mainte-
nance programmer needs to add another control flag to a PGE, he must make
changes in both eCntl_mod and GetControl.

Figure 7-3 GetControl

GetControl

init_StdCntl

OpenCF Parse_StdCntl

Sanity_Check

GSAS Detailed Design Document GSAS Core PGEs

Version 5.0 Page 7-6 March 2006

7.4.3.1 Init_StdCntl

Init_StdCntl is a subroutine within the StdCntl_mod of the exec_lib. It initializes the
text representation of standard (i.e.: common to all PGEs) control file elements.

7.4.3.2 OpenCF

OpenCF is a subroutine within the StdCntl_mod of the exec_lib. It uses a system call
to get the value of the control file argument. Platform-specific defines are used here to
set the correct position of the argument within the argument list. After getting the
name of the control file, OpenCF opens the specified file and scans the file for the
start of the specified section. If the control file cannot be opened, a fatal error is
returned to the calling process.

7.4.3.3 Parse_StdCntl

Parse_StdCntl is a subroutine within the StdCntl_mod of the exec_lib. It takes control
file entries common to all PGEs and parses them, filling the appropriate data struc-
ture. In the case of INPUT_FILE and OUTPUT_FILE controls, the routine will
attempt to decode the filetype from the filename and fill the appropriate file control
structure.

7.4.3.4 Sanity_Check

Sanity_Check is a subroutine within the local GetControl module. It will examine the
parsed execution flags and file control structures in order to determine if the control
file specifications are valid for the specific PGE. Each PGE has a set of pre-determined
rules which dictate what combination of flags and files are appropriate for the
defined execution scenarios. Errors will be generated if Sanity_Check finds a problem
with the control file configuration.

7.4.4 OpenFiles

OpenFiles is an element of the exec_lib. It opens the first granule of each filetype
specified in the control file. The files are opened as direct or formatted based on infor-
mation in the file control structure. Normally, OpenFiles assigns a unit to each file it
opens and reassigns that same unit to each subsequent granule of that particular file-
type. However, in the case of multi-file granules (indicated by a flag in the file control
structure), OpenFiles will assign unique units to each file of the first granule and
open all files of the first granule. Those files which are not opened are checked for
existence and readability.

7.4.5 PrintCntl

PrintCntl is a subroutine of the StdCntl module within the exec_lib. It writes the con-
trol file contents to the ANC06 log file.

7.4.6 Write_LibVer

Write_LibVer is an element of the exec_lib. It writes foundation library version infor-
mation to the ANC06 log file.

GSAS Core PGEs GSAS Detailed Design Document

March 2006 Page 7-7 Version 5.0

7.4.7 ReadAnc

ReadAnc is an element of the exec_lib. It calls subroutines within the anc_lib to read
all requested static ancillary files. The contents of these files are kept in core memory,
and, by definition, only read once per execution.

Some special cases exist within ReadAnc:

• If available, the first two ANC01 header files are read via ReadAnc, but subse-
quent ANC01 header files are read in a time-synchronized fashion within
ReadData. Subsystem-specific MET routines read the actual MET science data.

• Precision Orbit Determination files (ANC08) are not read, but the number of
POD files available are counted and this count is stored in a global variable
within anc08_pod_mod for later use. A POD data structure is initialized based
on the number of files available.

• Precision Attitude files (ANC09) are via a special routine which converts the
provided GPS time to UTC time. A flag is set which can be used to determine
if valid PAD data exist.

• ANC29 and ANC32 files are read into memory and sorted to account for
potential PDS boundary problems. The ANC29.32 design is documented in
more detail in the GLAS_L0proc and GLAS_L1A sections.

7.4.8 Write_AncVer

Write_AncVer is an element of the exec_lib. It writes any version information regard-
ing ancillary files which were read to the ANC06 log file.

7.4.9 ReadData

ReadData is an element of the exec_lib. It calls subroutines to read one second of
requested dynamic ancillary and product data in a time-synchronized fashion. It also
seemlessly handles end-of-granule conditions and sets file-specific data availability
flags in the appropriate file control structure. Figure 7-4 shows the structure chart for
ReadData.

Data are read in a logical order which allows lower-numbered products to pass val-
ues forward to data structures of higher-level products. See Section 6.5 for more
information regarding the “pass-thru” concept and product/algorithm data conver-
sion.

The time-synchronization methodology used by ReadData is rather complex. The fol-
lowing algorithm will attempt to describe the procedure:

• Save time and index of last data read.

• Initialize global time and index to invalid

• Loop through each input file type we are to synchronize

- Set data time and index to invalid

- Get the current granule index of the current filetype

GSAS Detailed Design Document GSAS Core PGEs

Version 5.0 Page 7-8 March 2006

- Set the readnew flag to false.

- Loop within the current granule of the current filetype unless the file is not
available or we reach EOF

- Read a data record (ReadRecord)

- Cycle if EOF

- Cycle if data time < specified start time

- Set sync time to data time of record we just read

- Exit Interior Loop

- We exit exterior loop when we have a sync time and data time >= sync time
+- limit. If we exceeded the limit, decrement the counter and fill the record
with invalids. Write error message regarding data gap.

Figure 7-4 ReadData

ReadData

ReadRecord InvalidRecord read_met_hdr

ReadGLA00

ReadGLAxx

GLAxx_P2A

Pass_GLAxx

ReadANC09

next_granule

GLAxx_prod_init

GLAxx_alg_init

read_gla00_index read_apid19 read_apid25

read_apid35

read_apid55

GSAS Core PGEs GSAS Detailed Design Document

March 2006 Page 7-9 Version 5.0

• Check all input files from which we sync for EOF. If all EOF, then set end-of-
processing flag and return to calling routine.

• If requested, synchronize ANC09 with data time.

• If requested, synchronize ANC01 with data time. Since we keep 2 ANC01
header files in memory, move the 2nd to the 1st and read a new one into the
1st until data are synchronized.

In addition, since some GSAS records contain data whose duration exceeds one sec-
ond, there is a algorithm used to determine when a record of a particular data type
has exceeded it’s “validity”. This allows for the integration of one second data with
multi-second data records. Once the defined period of validity has passed, ReadData
replaces the current data with new data, or, if no data can be synchronized, invalid
data to account for gaps.

Note that custom read subroutines are required for APIDs 19, 25, 35 and 55. These are
required since these APIDs have data misalignments while prevent them from being
read in the standard way.

7.4.9.1 ReadRecord

ReadRecord is an internal subroutine to ReadData. It calls file-specific routines to
read one second of the requested data type. ReadRecord will seemlessly move across
multiple granules, if necessary. If unsuccessful in reading the requested record, it will
set the specific data structure to invalid values and return a flag indicating failure.

7.4.9.2 next_granule

next_granule is an internal subroutine to ReadData. It closes the current granule and
open the next, if available. File control structures are set to indicate success or failure.

7.4.9.3 InvalidRec

InvalidRec is an internal subroutine to ReadData. It calls file-specific routines to set
the data structures of the target file to invalid values.

7.4.10 Managers

Managers are routines local to each specific PGE. Managers control and execute pro-
cess-specific tasks. The use of a Manager routine in a PGE is entirely optional. The
purpose of a manager is to provide a software layer between the fairly generic main
routine and the task-specific subroutines or subsystem libraries. A good rule of
thumb is to use a Manager for complex processing jobs, but to simply insert code into
the main routine for relatively simple tasks.

7.4.11 MainWrap

MainWrap is an element of the exec_lib. This routine is called just before the end of
execution to close any open files and write summary data to ANC06. This summary
data includes:

• The number of each type of status message encountered.

GSAS Detailed Design Document GSAS Core PGEs

Version 5.0 Page 7-10 March 2006

• The number of each type of error message encountered.

• The number of records read for each input file used.

• The number of records written for each output file created.

March 2006 Page 8-1 Version 5.0

Section 8

GLAS_L0proc

8.1 Overview

GLAS Level 0 APID files will normally be distributed as a PDS (Production Data Set)
in approximately 6 hour segments or as an EDS (Expedited Data Set) which will be
distributed as a Pass Data Dump. There will be several files, each containing a spe-
cific APID record for the segment. These segments will be sets of real-time and play-
back data received from the polar ground stations. The software that will pre-process
GLAS L0 data is the GLAS Level-0 Processor (GLAS_L0proc).

8.2 Function

GLAS_L0proc is a utility PGE that will time synchronize GLA00 APIDs in a manner
such that records within different GLAS products may be easily correlated. To do this
GLAS_L0proc creates a unique number (rec_ndx) for each packet of data collected by
the GLAS instrument. This index will be assigned to the matching records within
each Level 0 APID and will account for the 0.25 second waveform Altimeter Digitizer
packets

GLAS_L0proc will read each input APID and ancillary file listed in the control file
and produce a single index file (ANC29) and a single GPS time correction file
(ANC32). The ANC29 file will contain an index to each record in the set of files in
the PDS/EDS. The program will group the data in one-second intervals. The ANC32
file will be used during L1A processing to assist in precise laser shot time-tagging.

GLAS_L0proc will also perform limited error checking on the APIDs it reads. It will
signal an error if more than the maximum allowed APID records fall within a second
and write a warning message to ANC06. Several fields within the APID primary
header will be checked against reference values. These errors will be flagged and
recorded. Duplicate APID records are checked, flagged and recorded, as well.

The core GLAS PGEs are used as a model for GLAS_L0proc. A major difference in the
GLAS_L0proc implementation is that it reads the APIDs one file at a time, rather than
synchronously reading all the APIDs record by record. Despite this difference, a great
deal of the PGE model was used to create GLAS_L0proc, which will ease software
maintenance chores.

Developer experience is that working with L0 spacecraft data can entail a great deal
of debugging with regards to both software and the actual data. With this in mind, a
significant amount of debug code is embedded within GLAS_L0proc. This code can
be turned on with compiler flags but will generate an extensive amount of output.
This output is very useful for debugging purposes but can drastically slow execution
time. The recommended method of running with debugging turned on is to redirect
stdout to a file which can be examined after the run.

GSAS Detailed Design Document GLAS_L0proc

Version 5.0 Page 8-2 March 2006

GLAS_L0proc records statistics such as the number of missing records, number of
received records, number of bad records, etc. The software checks for too many
occurrences of an APID per second. Duplicate data is flagged as an error (warning
not fatal) and the message written to ANC06. Quality issues are tracked and reports
made of any problems/potential problems.

8.3 Approach

• GLAS_L0proc uses many of the standard routines from the model GSAS PGE
with only minor changes.

• GLAS_L0proc does not perform partial/selective processing or reprocessing.
There are no execution flags defined within GLAS_L0proc. Start and stop time
are required on control file INPUT_FILE and OUTPUT_FILE specifications for
consistency, but are not used.

• GLAS_L0proc uses the operating system-based qsort for sorting tasks. Glue
code written in C is used in conjunction with qsort.

• Several constants are needed by GLAS_L0proc processing. Constants include
such things at mission elapsed time (MET) offsets, APID identification code,
APID record lengths, and sort order keys. These constants are included within
the GLA00 product module in order to facilitate code reuse and ease configu-
ration management.

• The manager functionality is within the main GLAS_L0proc routine.

• ReadData is not used since data is read file-by-file, rather than record-by-
record.

8.4 Input and Output Files

Table 8-1 lists the required inputs to GLAS_L0proc. Table 8-2 lists the outputs created
by GLAS_L0proc. Files which are specific to GLAS_L0proc are documented in this
section. See the appropriate section of this document or the GLAS Science Data Man-
agement Plan for details regarding the those files not specific to GLAS_L0proc.

Table 8-1 GLAS_L0proc Inputs

File Spec Type Source Short Description

gla00*_??.dat Level-0 APID EDOS GLAS Level-0 APID files (one
file per each APID type).

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_01.dat Static Ancillary Science Team GLAS global constants file.

anc33*.dat Dynamic Ancillary ISIPS Operations Counter-to-UTC conversion file.

Control File Control ISIPS Operations Control file.

GLAS_L0proc GSAS Detailed Design Document

March 2006 Page 8-3 Version 5.0

8.4.1 GLA00 APID Files

The GLA00 APIDs are Level-0 multi-rate spacecraft data files provided to the GLAS
data processing facility by EDOS. There is a separate file for each specific APID type
received from the spacecraft. These files are fully documented by the GLAS Instru-
ment Team and within the GLAS L1A ATBD. These APIDs are listed in Table 8-3.

Table 8-2 GLAS_L0proc Outputs

File Spec Type Destination Short Description

anc29*.dat Dynamic Ancillary GLAS_L1A Index file correlating APID
times.

anc32*.dat Dynamic Ancillary GLAS_L1A GPS time correction file used for
precision timing of GLAS data.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

Table 8-3 Supported APIDs

APID Description

12 Altimeter Digitizer Large Sci Pkt

13 Altimeter Digitizer Small Sci Pkt

14 Altimeter Digitizer Eng Pkt

15 Photon Counter Sci Pkt

16 Photon Counter Eng Pkt

17 Cloud Digitizer Sci Pkt

18 Cloud Digitizer Eng Pkt

19 Ancillary Science Pkt

20 CT HW telemetry #1 Data Pkt

21 CT HW Telemetry #2 Data Pkt

22 CT HW Telemetry #3 Data Pkt

23 CT HW telemetry #4 Data Pkt

24 Small Software #1 Tlm

25 Large Software Telemetry #1 Packet

26 LPA Data Pkt

27 Memory Dwell Packets 1

28 Memory Dwell Packets 2

31 DSP Code Memory Dump

GSAS Detailed Design Document GLAS_L0proc

Version 5.0 Page 8-4 March 2006

8.4.2 ANC33 MET Counter to UTC Conversion File

The ANC33 file is used to convert mission-elapsed time (MET), which is provided in
the APIDs, to GLAS-standard UTC time. Since the MET can be re-set by a roll-over or
a spacecraft upset it is important that this file be maintained and provided to the
GLAS processing facility in a timely manner. The file is delivered to ISIPS from the
ISF as described in the ISF/ISIPS Interface Control Document.

ANC33 file is a ANSI text file. Each line contains data for a single entry in the file
(data should not be hard wrapped). Comment lines are allowed and prepended by a
character. Each line contains the following information:

d_shdr_count <sp> d_shdr_count_prap <sp> d_utc <sp>
d_glas_osc_rate <sp> d_sc_osc_rate <sp> d_tdelay_digtzr <sp>
d_rdelay_digtzr <sp> d_plTbias <sp> d_plRbias <sp>
i_trkr_subject1 <sp> i_trkr_subject2 <sp> i_trkr_subject2
<sp>implement_time

Each field is defined in Table 8-4.

32 DSP Data Memory Dump

33 C & T Dwell Packet

34 Event Message Packet

35 Memory Dump Packet

36 Table Dump Packet

38 Boresite Calibration Packet

48 GLAS Data Types Packet

49 Command History Packet

50 CT HW telemetry #5 Data Pkt

55 Large Software Telemetry #2 Packet

126 LPA Test Packet

1984 GLAS PRAP Packet

Table 8-4 ANC33 Field Descriptions

Field Description

d_shdr_count double precision: the counter value in the secondary header on MOST
APIDS

d_shdr_count_prap doube precision: the counter value in the secondary header of PRAP

Table 8-3 Supported APIDs (Continued)

APID Description

GLAS_L0proc GSAS Detailed Design Document

March 2006 Page 8-5 Version 5.0

Note that the Implement_time is the UTC time at which this conversion was valid.
GLAS_L0proc uses the designated start time of the first APID specified in the control
file to find the correct position within the ANC33 file based on the Implement_time
field.

8.4.3 Control File

The control file format and common elements are documented in Section 5 of this
document. Elements specific to GLAS_L0proc are described here.

The control file section delimiter for GLAS_L0proc is:

=GLAS_L0P

Since GLAS_L0proc has no requirement for execution scenarios, there are no unique
keywords for the GLAS_L0proc control file. GLAS_L0proc will perform all functions
based on the presence of input and output files within the control file.

8.4.4 ANC29 Index File

The ANC29 index file provides GLAS_L1A with a method of time-correlating the
GLAS APID files. It contains an index record for every record in the input APID files.
ANC29 is a binary, fixed-length record file. Its format and fields are described in
Table 8-5.

8.4.5 ANC32 GPS File

The ANC32 GPS file provides GLAS_L1A with a method of computing precise tim-
ing calculations based on the last update of the onboard GPS. It contains records

d_utc double precison: the J2000 UTC time in seconds to which the counter val-
ues are converted

d_glas_osc_rate double precision: the GLAS oscillator rate

d_sc_osc_rate double precision: the Spacecraft oscillator rate

d_tdelay_digtzr double precision: time delay for digitizer in seconds

d_rdelay_digtzr double precision: internal range delay for digitizer in m

d_plTbias double precision: post launch time bias in seconds

d_plRbias double precision: post launch range bias in m

i_trkr_subject(1) integer: the subject indicator for LRS tracker 0

i_trkr_subject(2) integer: the subject indicator for LRS tracker 1

i_trkr_subject(3) integer: the subject indicator for LRS tracker 2

d_implement_time double precision: the J2000 UTC time in seconds where the data are first
valid

Table 8-4 ANC33 Field Descriptions (Continued)

Field Description

GSAS Detailed Design Document GLAS_L0proc

Version 5.0 Page 8-6 March 2006

which identify each time the GPS clock is updated within the APID packets. ANC33
is a binary, fixed-length record file. Its format is described in Table 8-6.

Table 8-5 ANC29 Format/Description

Variable Type Bytes Description

utctime double precision 8 J2000 UTC time in seconds. Computed from the
MET counter in each APID’s secondary header.

rec_ndx long integer 4 Mission-unique index number assigned to the set of
APIDs defined by a one second duration and group-
ing rules. This number will be assigned to corre-
sponding data records in every GLAS data product.
The value is nominally (utctime - launchtime) * 10, in
seconds.

shot_ctr long integer 4 The appropriate shot counter from each APID.

rec_num long integer 4 The physical record number of the corresponding
data within the APID file.

apid long integer 4 The APID number (assigned by the spacecraft
team) of the APID.

DQFlag long integer 4 Data quality flag.

sort_order short integer 2 Sort order (for internal use).

spare short integer 24 Spare bytes to align data structure to 8-byte bound-
ary.

Table 8-6 ANC32 Format/Description

Variable Type Bytes Description

rec_ndx long integer 4 Mission-unique index number assigned to
the set of APIDs defined by a one second
duration and grouping rules. This number
will be assigned to corresponding data
records in every GLAS data product. The
value is nominally (utctime - launchtime) *
10, in seconds.

i_ScPosPktShot short integer 2 Shot counter within APID 19 position
packet, starting at byte location1182.

i_useflag short integer 2 Flag indicating if the data are valid (0=valid,
other=not valid).

utctime double precision 8 UTC time in J2000 seconds where GPS
update occurred. This value corresponds
exactly to a UTC time in the ANC29 file.

FTLatch double precision 8 Frequency board latch counter within
APID19, starting at byte location 1195.

GLAS_L0proc GSAS Detailed Design Document

March 2006 Page 8-7 Version 5.0

8.5 Design

Figure 8-1 shows the top-level structure chart of GLAS_L0proc. The basic processing
algorithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read static ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Until all APID files are read...

- Read APIDs and fill index and gps arrays (readglop)

• Sort the index array (sort_gla00_index)

• Sort the GPS array (sort_gps)

• Convert the MET time into UTC time (utc_time_conversion)

• Group the APID records and assign rec_ndx (IndexGrouping)

• Check the index array for duplicates

• Write the index arrays to file

• Assign rec_ndx to GPS array entries

• Validate data within GPS array and set useflag appropriately

• Write GPS array to file

• Close all files and generate summaries (MainWrap)

ScPosPktGMET double precision 8 MET counts within APID 19 position packet,
starting at byte location 1184.

d_VTCW double precision 8 BCTCW latch value within APID19 starting
at byte location 1142.

d_VTCWp double precision 8 VTCW value at time of 0.1Hz pulse within
APID19 starting at byte location 1182.

GPSTime double precision 8 GPS receiver time in counts within APID19
starting at byte location 1172.

GPSppsGMET double precision 8 MET for GPS 0.1hz counter within APID19
starting at byte location 1201.

Table 8-6 ANC32 Format/Description (Continued)

Variable Type Bytes Description

GSAS Detailed Design Document GLAS_L0proc

Version 5.0 Page 8-8 March 2006

8.5.1 PGE Core Routines

Except where noted, the following PGE core routines are used exactly as defined in
the Core PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• MainWrap

Exceptions to normal core routine conventions include:

• eCntl_Init does not define or set execution flags.

• GetControl does not parse any execution flags.

• Start and stop times are required on the INPUT/OUTPUT_FILE assignments,
but are not used by GLAS_L0proc to delimit processing. However, the start
time of the first APID specified is used as a reference time when finding the
correct coefficient for MET-to-UTC conversion. It is critical that this time is
specified correctly.

Figure 8-1 GLAS_L0proc Structure Chart

GLAS_L0proc

PGE Core
Routines

MainInit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl

Write_LibVer
ReadANC

Write_AncVer

ReadGLOP

sort_gla00_index sort_gps

IndexGrouping

MainWrap

utc_time_conversion

GLAS_L0proc GSAS Detailed Design Document

March 2006 Page 8-9 Version 5.0

8.5.2 ReadGLOP

ReadGLOP is a subroutine within the local glop_mod module. The glop_mod itself
contains several important constants. Since GLAS_L0proc creates its index and GPS
arrays in memory, a maximum length for each array is defined in this module. The
arrays themselves are defined and allocated in this module, as well.

ReadGLOP is called by the main GLAS_L0proc routine once for each APID which is
to be processed. ReadGLOP uses the APID number to read each record of the APID
into the appropriate data structure.

ReadGLOP uses standard Fortran direct-to-structure reads to read most APIDs.
However, several APIDs are not aligned on 4-byte boundaries. For these, ReadGLOP
calls specialized read subroutines which exist within the GLA00_mod module of the
product library.

If the APID read is an Ancillary Science Packet (APID19), GPS time is compared with
the previous GPS time. If a change has occurred, a GPS array element is filled with
the appropriate data.

The primary header of each APID record is converted and checked for error condi-
tions. Error checking includes the following:

• Primary header version = 0

• Primary header APID number = expected APID

• Primary header APID size = expected_APID_size – (header_size – 1)
(actual value of the offset is 7)

• Primary header secondary header flag /= 0

• Primary header sequence count delta = 1

Duplicate records are checked by comparing the sequence counter and utctime
against previous values.

Fields within the index structure are filled and a “sort rank” is assigned based on the
APID type. This “sort rank” is temporarily assigned to the spare 4 bytes at the end of
the data structure. The shot counter is converted from a signed to unsigned value
before assignment.

Since the MET-to-UTC conversion has not yet been performed, the MET counter is
assigned to the utctime. However, an APID-specific offset is added to the MET
counter for alignment purposes in order to account for processing delays aboard the
spacecraft. These values were provided by the instrument developers and are
defined in the GLA00_mod module within the product library.

8.5.3 sort_gla00_index

Sort_gla00_index is a C routine local to GLAS_L0proc. It provides a comparison func-
tion for the system qsort routine and calls qsort with the index array. qsort returns an
index array sorted by utctime (primary) and sort rank (secondary). Sorting the index
provides a list of interspersed APID records in time/rank order. Sorting is necessary

GSAS Detailed Design Document GLAS_L0proc

Version 5.0 Page 8-10 March 2006

so that the index_grouping module can correctly assign a rec_ndx to the correct
group of corresponding APID records.

An important programmer note is that a C header file (gla00_index.h) is required for
sort_gla00_index. If a programmer changes the Index file data structure, they must
change the gla00_index.h file in a corresponding manner.

8.5.4 sort_gps

Sort_gps is a C routine local to GLAS_L0proc which is nearly identical to
sort_gla00_index. It sorts the GPS array by utctime using a comparison routine with
the system qsort call. (This is actually done more for safety than necessity.)

The same caveat applies here as does with sort_gla00_index. A C header file
(gps_index.h) is required for sort_gps. If a programmer changes the GPS file data
structure, they must change the gps_index.h file in a corresponding manner.

8.5.5 utc_time_conversion

UTC_time_conversion is a routine local to GLAS_L0proc. It reads reference values
from ANC33 and uses those values to convert MET counter values within the index
array to UTC time.

The routine is passed the start time (taken from the control file entry) of the lowest-
numbered APID which has been read. It uses this as it’s initial time and searches
through the ANC33 file for the first implement time greater than or equal to the ini-
tial time.

Once it has found the correct implement time, it loops through the index array and
uses the associated refMET_Counts, refUTC_seconds, and Interval to convert the
MET counter to UTC time within the index. While looping, it checks to see if the pre-
viously computed UTC time is greater than the next implement time. If so, it reads
the associated ANC33 values and uses those for the next UTC conversions.

Additionally, while looping through the index file, the routine checks the GPS array
for matches between the APID19 index MET counter and GPS MET counter. If a
match is found, the GPS MET counter is converted to UTC time.

The UTC time conversion calculation is performed as follows:

UTC time = refUTC_seconds + (MET counter - refMET_Counts) * Interval

8.5.6 Index_Grouping

Index_grouping is a routine local to GLAS_L0proc. It scans through the index array
and assigns rec_ndx values based on a data alignment algorithm.

Sort_gla00_index has already sorted the index array based on MET counts and sort
rank. Based on information from the instrument team, certain APIDs are guaranteed
to have the same MET counter value for a particular second of data. The sort rank
takes this into account and sorts these APIDs at a higher level than others. Addition-
ally, the sort order also accounts for importance, guaranteeing that if an APID record

GLAS_L0proc GSAS Detailed Design Document

March 2006 Page 8-11 Version 5.0

exists for a certain second, it will be in a fixed position relative to other APIDs within
the one second interval.

The routine loops through the index array. When it detects one of the higher-ranked
APIDs, it computes a rec_ndx from the UTC time. This rec_ndx is assigned to the cur-
rent APID record and subsequent APID records until another higher-ranked APID is
detected. During the period of assigning the rec_ndx, several error checks are per-
formed. These are:

• The number of specific APID types assigned the same rec_ndx is checked
against a reference maximum-APID-per-second reference (which is defined in
GLA00_mod.) If the maximum of a specific APID is exceeded, the rec_ndx
value is recomputed and assigned to the current and subsequent APIDs.

• The shot counter values of specific APIDs (AD_LgSci, AD_SmSci, AD_Eng,
PC_Sci, PC_Eng, CD_Sci, CD_Eng, AN_Sci, LPA) are checked for consistency.
If the shot counters within the same rec_ndx are inconsistent, the rec_ndx
value is recomputed and assigned to the current and subsequent APIDs

GSAS Detailed Design Document GLAS_L0proc

Version 5.0 Page 8-12 March 2006

March 2006 Page 9-1 Version 5.0

Section 9

GLAS_L1A

9.1 Overview

GLAS_L1A is a core GSAS PGE. It uses the L1A subsystem to create GLAS Level 1A
data from the Level 0 GLAS instrument data products. GLAS_L1A will use the
ANC29 and ANC32 files created by GLAS_L0proc to time-synchronously read the
appropriate GLA00 APID files.

9.2 Function

The L1A process includes applying calibration equations determined during GLAS
system testing to convert the measured counts into engineering units. The conver-
sions of the counts to engineering units will be one or more of several types: straight
polynomial conversion based on the measurement counts; multi-variable conver-
sions with dependence on additional measurements such as temperature; special
conversions based on a complex dependence of several measurements, interpretation
of data, table look-up, and geophysical based conversions. Some data will not require
conversion and will be retained in counts. The Stellar Reference System (SRS) atti-
tude and position data and the GPS data will be from standard existing systems sim-
ilar to those used on other spacecraft. The conversions and calibration equations for
the L1A subsystem are defined the L1A ATBD.

The altimeter data, including the waveforms, are packaged into the GLA01 data
product. The atmospheric data from the photon counters and the cloud digitizer, as
well as supporting data, are packaged into the GLA02 data product. Both GLA01 and
GLA02 include location data obtained from the predicted orbit file. The GLAS instru-
ment engineering and housekeeping data are stored in the GLA03 data product. The
SRS and GPS data along with the laser pointing monitor data will be packaged into
the GLA04 data product.

9.3 Design Approach

The following design criteria are specific to GLAS_L1A.

• GLAS_L1A fully uses the standard routines from the model GSAS PGE.

• GLAS_L1A can perform partial processing, but not reprocessing. GLAS_L1A
does perform time-based selective processing. There are, however, dependen-
cies between L1A_Atm and L1A_Alt. Partial-processing will not yield the
same results for certain parameters as full-processing.

• The ANC29 file (created by GLAS_L0proc) is used to read GLA00 data from
the appropriate APID file in the correct order.

GSAS Detailed Design Document GLAS_L1A

Version 5.0 Page 9-2 March 2006

• Due to issues due to aligning multi-rate data across PDS boundaries, the
ANC29 and ANC32 files are read into core and re-sorted. This is a break from
the concept of normal record-by-record processing.

• L1AMgr is specific to the L1A subsystem. The L1A manager is used to control
all L1A-specific science algorithm processes and interfaces directly with the
L1A subsystem.

9.4 Input and Output Files

Table 9-1 lists the required inputs to GLAS_L1A. Table 9-2 lists the outputs created by
GLAS_L1A. See the GLAS Data Products Specifications Volumes or GLAS Science
Data Management Plan for details regarding the these files.

9.5 GLAS_L1A PGE

Figure 9-1 shows the top-level structure chart of GLAS_L1A. The basic processing
algorithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

Table 9-1 GLAS_L1A Inputs

File Spec Type Source Short Description

gla00*_??.dat Level-0 APID EDOS Level-0 APID files (one file per
each APID type).

anc07*_00.dat Static Ancillary Science Team Error file.

anc07*_01.dat Static Ancillary Science Team Global constants file.

anc07*_05.dat Static Ancillary Science Team L1A constants file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc29*.dat Dynamic Ancillary GLAS_L0proc APID index file.

anc32*.dat Dynamic Ancillary GLAS_L0proc GPS time correlation file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc20*.dat Dynamic Ancillary UTexas Predicted orbit file.

anc45*_01.dat Static Ancillary Science Team GLA01 metadata input file.

anc45*_02.dat Static Ancillary Science Team GLA02 metadata input file.

anc45*_03.dat Static Ancillary Science Team GLA03 metadata input file.

anc45*_04.dat Static Ancillary Science Team GLA04 metadata input file.

Control File Control ISIPS Operations Control file.

GLAS_L1A GSAS Detailed Design Document

March 2006 Page 9-3 Version 5.0

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Until all data are processed...

- Execute the L1A_Manager

• Close all files and generate summaries (MainWrap)

Table 9-2 GLAS_L1A Outputs

File Spec Type Destination Short Description

gla01*.dat L1A Product GLAS_L1A GLAS L1A Altimetry product file.
Contains the waveforms and the
altimeter and timing data
required to produce higher level
range and elevation products.

gla02*.dat L1A Product GLAS_Atm GLAS L1A Atmosphere product
file. Contains the normalized
backscatter, photon counter,
cloud digitizer, timing, and
location data required to pro-
duce the higher level atmo-
sphere data products.

gla03*.dat L1A Product Archive L1A Engineering product file.
Contains the GLAS instrument’s
engineering and housekeeping
data.

gla04*_01.dat L1A Products UTEXAS L1A LPA product file.

gla04*_02.dat L1A Products UTEXAS L1A LRS product file.

gla04*_03.dat L1A Products UTEXAS L1A GYRO product file.

gla04*_04.dat L1A Products UTEXAS L1A IST product file.

gla04*_05.dat L1A Products UTEXAS L1A BST product file.

gla04*_06.dat L1A Products UTEXAS L1A SCPA product file.

qap01*.dat L1A Quality QA L1A Altimetry quality file.

qap02*.dat L1A Quality QA L1A Atmosphere quality file.

qap03*.dat L1A Quality QA L1A Engineering quality file.

qap04*.dat L1A Quality QA L1A SRS/GPS/laser pointing
quality files.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

GSAS Detailed Design Document GLAS_L1A

Version 5.0 Page 9-4 March 2006

9.5.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• ReadData

• MainWrap

9.6 L1A Manager (L1A_Mgr)

The L1A Manager controls execution of the L1A subsystem, passes variables from the
GLA00 APIDs to the L1A products, and handles granule start/stop. The manager
controls execution of the science algorithms based on flags received from the control
file via GLAS_L1A. Figure 9-2 shows the L1A Manager Structure Chart. Figure 9-3
shows a flow chart of the L1A Manager.

L1A_Mgr is passed arrays of output file control structures and execution flags. It
accesses product and algorithm data directly from the requisite public data struc-
tures. Execution flags are defined in eCntl_mod; file control structures defined in the
fCntl_mod component of the exec_lib, and product/algorithm data within the
GLA00, GLA01, GLA02, GLA03, and GLA04 components of the product_lib.

Figure 9-1 GLAS_L1A Structure Chart

GLAS_L1A
PGE Core
Routines

MainInit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl

Write_LibVer
ReadANC

Write_AncVer
Write_eCtrl
ReadData

L1A_Mgr
checkoutput
(PGE core)

MainWrap

GLAS_L1A GSAS Detailed Design Document

March 2006 Page 9-5 Version 5.0

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, final QA routines are called and the product and QA
files are closed. If another granule of the same type has been specified in the control
file, the manager opens the appropriate product and QA files and loops to verify the
stop time of the new granule is greater than the nominal time of data.

After checking the granule times, processing begins. The manager calls
calc_shot_time, which computes precise 40 per second timing information. It then
calls C_CalcSpLoc which computes 40 spot locations based on the 40 per second tim-
ing information and the location of satellite position interpolated from the predicted
orbit file (ANC20).

Next, the manager executes several science algorithms based on its execution flags
and data availability. L_Eng, L_Alt, L_Atm, and L_Att are called. Each returns a flag
indicating if the appropriate data product should be written. Values which are passed
directly from one product to another are set appropriately.

QA routines are called to process QA information and the WriteL1A routine is called
with the appropriate flags to write data to the product files. Before writing a record,
WriteL1A verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal
time is less than the start time, the data record is not written. An appropriate error
message is written to ANC06 if a record is skipped.

Figure 9-2 L1A_Mgr Structure Chart

L1A_Mgr

L_ALT

PGE Core Routines

glaxx_hdr_init
glaxx_hdr_update
com_hdr_update
Write_glaxx_hdr

GLAS_Error

L_ALT_QA

L_ATM

L_ATM_QA

L_ENG

L_ENG_QA

L_ATT

L_ATT_QA

calc_shot_time

est_shot_time

C_InterpPOD

GSAS Detailed Design Document GLAS_L1A

Version 5.0 Page 9-6 March 2006

9.7 PGE/Manager Implementation Details

This section discusses specific aspects of the PGE/Manager implementation which
should be addressed in more detail.

9.7.1 ANC29/ANC32/GLA00 Input

ANC29 data are handled differently than most core PGE I/O. Due to potential PDS
boundary problems (for example, the waveform data for a particular second may be
on a different PDS than the corresponding ancillary science data), all input ANC29
granules are read into memory by the ReadAnc core PGE routine. This array is
dynamically allocated based on the number of records indicated in each ANC29 file
header. The internal file number from which the ANC29 data are read is stored into a
spare byte in the array so that when GLA00 data are read, the corresponding GLA00
file is used. After the ANC29 granules are read into memory, the data are sorted to
guarantee the correct time order. ANC32 data are loaded into memory similarly.

Figure 9-3 L1A Manager Flow Chart

L_Eng

calc_shot_time

c_calc_sploc

perform_L_alt
AND ALT

data_avail?

L_ALT

perform_L_Atm AND
ATM data_avail?

L_Atm

perform_L_eng

Wrapup

c_intrpPOD

Set d_thresh_xing, GLA02
rec_ndx, time, location

L1A_Mgr
7 / 2 1 / 0 0

Set GLA01 rec_ndx,shot
time, location

call GLAS_Error

N

N

Y

Y

Y

N

GLAS_L1A GSAS Detailed Design Document

March 2006 Page 9-7 Version 5.0

ReadData actually “reads” the ANC29 and ANC32 data on a second-by-second basis
from memory. As the specialized ANC29/32 I/O was a fairly late design decision,
this implementation minimized changes to the ReadData logic. ReadData uses the
ANC29 data to read the correct records from the various GLA00 APID files. It reads
1-second groups of APID records using the physical record number, APID type, and
internal file number to determine the correct position within the GLA00 files.

ReadData determines the content of a 1-second group by examining ANC29 rec_ndx
values. “rec_ndx” is described fully in the GLAS_L0proc section, but suffice to say, it
is an integer corresponding to 0.1 second utctimes. For the most part, rec_ndx values
for APIDs of a particular second are the same exact value. However, in the case of
APIDs which straddle PGEs, the values may not be exactly the same. To handle this
case, ReadData will consider that rec_ndx values which correspond within 0.9 sec-
onds are part of the same second. This value is a constant defined in GLA00_mod.f90
as “rec_ndx_slop”.

9.7.2 Missing APIDs

Different GLAS APID packets originate from different subsystems of the GLAS
instrument. Depending upon the instrument state, APIDs may or may not be present
in the data stream. In addition, data drop-outs present the possibility of missing data.

The L1A Manager sets an array of flags (APID_Av_Flg) to indicate present or missing
data. A signal flag is set for each 1-second APID record. The complication arises when
checking the 1/4 second APID waveform records AD_LgSci, AD_SmSci). In order to
figure out which of the four records are missing, the manager examines shot
counters. By definition, the shot counter in the Ancillary Science (AN_Sci) APID will
match the first shot counter in the first corresponding waveform record. The manager
uses this knowledge to set positional flags that indicate which of the 1/4 waveform
APIDs are missing.

If at least one of the waveform records or the AN_Sci record is available, L1A_Mgr
calls L_Alt and a GLA01 record is written. If the Photon Counter Science (PC_Sci),
Cloud Digitizer Science (CD_Sci), or AN_Sci records are available, L1A_Mgr calls
L_Atm and a GLA02 record is written.

The GLA01 product file is a little different than the other GLAS products in that it
contains different record types. It has the following record types: main, large wave-
form, and small waveform. The main record type occurs once per second. The large
waveform type occurs five per second. The small waveform type occurs twice per
second. A record identifier (i_gla01_rectype) within each record identifies what type
that record is. If at least one of the waveform records or the AN_Sci record is avail-
able, the Main record type exists in GLA01 for a particular second. If at least one of
the waveform records is available, the waveform type (small or large) records exist in
GLA01 for that second.

9.8 L1A_Subsystem

Figure 9-4 illustrates the processes that comprise the L1A subsystem.

GSAS Detailed Design Document GLAS_L1A

Version 5.0 Page 9-8 March 2006

9.8.1 Subsystem Design Decisions and Assumptions

The following design decisions were made:

• We will perform the precision shot time calculation in its own module since
this information is required for geolocation.

• Any Altimetry data required for L_Atm will be computed in L1A_Mgr.

The following assumptions were made:

• L1A will not be executed if L_Eng is not executed.

9.8.2 DFDs and their Descriptions

9.8.2.1 Level 1A Altimeter Processing

The purpose of the Level 1A Altimeter Processing (process 2.1) is to generate the data
to be stored on the Level 1A Altimeter Data product (GLA01). This process performs
engineering unit conversion on the raw Level 0 altimetry data (Alt_In) to obtain the
Level 1A altimetry data in engineering units. Any engineering/ housekeeping data
that are required to be on the GLA01 data product are collected here and placed in
the output structure. Quality assessment computations are performed, collected and
placed in an output QA structure.

Figure 9-4 Level 1A Computations

2.2
L1A Atmosphere

Processing

2.1
L1A Altimetry
Processing

2.3
L1A Engineering

Processing

2.4
L1A Att

Processing

2.5
Calculate Shot

Time

2.6
Get Predicted

Orbit

lt_In

Eng_In Atm_In

rawTime_In

POD_In

Att_In

Time_Out

Time_Out Time_Out

Time_Out

Eng_Out Eng_Out

POD_Out POD_Out POD_Out POD_Out

Atm_Out

Eng_Out

Alt_Out Att_Out

GLAS_L1A GSAS Detailed Design Document

March 2006 Page 9-9 Version 5.0

9.8.2.2 L1A Atmosphere Processing

The purpose of the L1A Atmosphere Processing (process 2.2) is to generate the data
to be stored on the Level 1A Atmosphere Data product (GLA02). This process per-
forms engineering unit conversion on the raw Level 0 atmosphere data (Atm_In) to
obtain the Level 1A atmosphere data in engineering units. Any engineering/ house-
keeping data that are required to be on the GLA02 data product are collected here
and placed in the output structure. Quality assessment computations are performed,
collected and placed in an output QA structure.

9.8.2.3 Engineering Data Processing

The purpose of the Engineering Data Processing (process 2.3) is to generate the data
for the Level 1A Engineering Data product (GLA03). This process performs engineer-
ing unit conversion on the raw Level 0 engineering/housekeeping data (Eng_In) to
obtain the Level 1A engineering data in engineering units. Any Level 0 data that are
not stored on either GLA01, GLA02, or GLA04 are collected here and placed in the
output structure. Quality assessment computations are performed, collected and
placed in an output QA structure.

Additionally, specific parameters of the Eng_Out structure are passed to the Altime-
try and Atmosphere processors.

9.8.2.4 Collect Instrument and S/C Position and Attitude

The purpose of process 2.4 is to collect the GPS data, instrument and S/C position
and attitude data and to generate the L1A Position and Attitude data product
(GLA04). The APIDs used to generate GLA04 include APID19, APID26, and
APID1984. The GLA04 product is required for input to the precision orbit and atti-
tude determination algorithms. This process checks the Level 0 packets for errors,
configures the data for output and collects QA data.

Due to internal spacecraft/instrument timing issues all data corresponding to one
second of GLA04 data may not be within one second of APID1984. To align the LRS
and IST data to corresponding APID19 shot times, a 6 second double-buffering algo-
rithm is used to match the LRS and IST data with corresponding APID19 shots. To
complicate matters, the LRS and IST data occur at a rate of 10/second, whereas the
APID19 shots occur at a rate of 40/second. The algorithm finds the APID19 shots
closest to the LRS/IST data and merges the APID19 and APID1984 data into a single
one second GLA04 record.

9.8.2.5 Calculate Shot Time

The Calculate Shot Time process (process 2.5) will generate the precise time of each
laser shot. The actual methodology of the time calculation depends upon the pres-
ence of the Ancillary Science (AN_Sci) APID. If AN_Sci is not present, 40-per-second
time is generated linearly using a 0.025 increment. If AN_Sci is available, the time
will be calculated from the laser fire time, GPS time, and the GPS latch time. Offsets
and calibration factors will be applied as necessary. The process is fully described in
the L1A ATBD.

GSAS Detailed Design Document GLAS_L1A

Version 5.0 Page 9-10 March 2006

9.8.2.6 Get Predicted Location

The Get Predicted Location process (process 2.6) obtains the latitude and longitude
for each shot from the predicted orbit file using common routines. The shot times are
input, the predicted orbit file is interpolated to get the spacecraft position vector for
each shot time, and then the latitude and longitude are computed from the position
vector. The common routines c_intrpPOD and c_calc_sploc will be used for the calcu-
lations. The common routines will be called directly by the L1A Manager; it is not
necessary to generate code for the Level 1A Computations subsystem.

March 2006 Page 10-1 Version 5.0

Section 10

GLAS_Alt

GLAS_Alt is a core GSAS PGE. It uses the Waveform and Elevation subsystems to
create GLAS Level 1B and 2 data from the Level 1 GLAS altimetry data products (and
optional L2 atmosphere products). GLAS_Alt will read the GLA01 file created by
GLAS_L1A to create the GLA05, GLA06, and GLA12-15 products. GLAS_Alt can also
read the GLA05 file which it created in a separate processing scenario to create
GLA06 and GLA12-15. Additionally, GLAS_Alt can read the GLA05 and GLA06 files
created in a separate processing scenario to generate GLA12-15.

10.1 Function

GLAS_Alt comprises both the Waveform and Elevation subsystems.

The Level 1B Waveforms subsystem computes the geolocation, and produces wave-
form-based information required to produce the elevation products (GLA05).

The Levels 1B and 2 Elevation Computation subsystem generates all elevation Stan-
dard Data Products, associated Processing Quality Assessment data, and related
computations. The Level 1B subsystem creates parameters for a Level 1B time-
ordered global product (GLA06) with a geodetically corrected surface elevation using
the same standard algorithm used for ice sheet regions. The Level 2 subsystem deter-
mines region specific (ice sheet, sea ice, land, and ocean regions) elevation parame-
ters for Level 2 time-ordered regional products (GLA12, GLA13, GLA14, and
GLA15). The presence of optional L2 Atmosphere products GLA09 and GLA11 cause
atmosphere-specific parameters on GLA06 and 11-15 to be filled with data. Flags
indicate the presence/absence of atmosphere data.

10.2 Design Approach

The following design criteria are specific to GLAS_Alt

• GLAS_Alt fully uses the standard routines from the model GSAS PGE.

• GLAS_Alt can perform partial processing. However, since the Elevations sub-
system needs data from GLA05, it is not possible to create GLA12-15 with only
GLA06 as an input.

• All products are output at one record per 1 sec. However, GLA12-15 are only
written when the footprint location falls within the respective regional mask.

• ANC01 meteorological data sets are required at times before and after the time
of the input product data.

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-2 March 2006

10.3 Input and Output Files

Table 10-1 lists the required inputs to GLAS_Alt. Table 10-2 lists the outputs created
by GLAS_Alt. See the GLAS Data Products Specifications Volumes or GLAS Science
Data Management Plan for details regarding the these files. Those files which are
only required by specific subsystems are noted within the table…

Table 10-1 GLAS_Alt Inputs

File Spec Type Source Short Description

anc01*.dat Dynamic Ancillary met_util Meteorological subset files. Data
sets at times before and after the
time of the profile are interpolated to
the time of the profile.

anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth Rota-
tion Data File.

anc07*_0000.d
at

Static Ancillary Science Team Error file.

anc07*_0001.d
at

Static Ancillary Science Team Global constants file.

anc07*_0003.d
at

Static Ancillary Science Team Waveform constants file.
*Waveform only

anc07*_0004.d
at

Static Ancillary Science Team Elevations constant file.
*Elevation only

anc08*.dat Dynamic Ancillary UTexas Precision Orbit file.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc12*_0000.d
at

Static Ancillary Science Team Coarse DEM file
*Elevation only.

anc12*_0001.d
at

Static Ancillary Science Team Fine DEM file
*Elevation only.

anc13*.dat Static Ancillary Science Team Geoid file
*Elevation only.

anc16*.dat Static Ancillary Science Team Load tide coefficients file
*Elevation only.

anc17*.dat Static Ancillary Science Team Ocean tide coefficients file
*Elevation only.

anc20*.dat Static Ancillary Science Team Predicted Orbit

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc27*_0000.d
at

Static Ancillary Science Team Coarse regional mask file.

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-3 Version 5.0

anc27*_0001.d
at

Static Ancillary Science Team Fine regional mask file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc45*_0001.d
at

Static Ancillary Science Team GLA01 metadata input file.
*Waveform only

anc45*_0005.d
at

Static Ancillary Science Team GLA05 metadata input file.

anc45*_0006.d
at

Static Ancillary Science Team GLA06 metadata input file.

anc45*_0012.d
at

Static Ancillary Science Team GLA12 metadata input file.

anc45*_0013.d
at

Static Ancillary Science Team GLA13 metadata input file.

anc45*_0014.d
at

Static Ancillary Science Team GLA14 metadata input file.

anc45*_0015.d
at

Static Ancillary Science Team GLA15 metadata input file.

Control File Control ISIPS Operations Control file.

gla01*_.dat Level-1A Product GLAS_L1A L1A Altimetry product file.
*Waveform only.

gla05*_.dat Level-1B Product GLAS_Alt L1B Waveform product file.
*Elevation only

gla06*_.dat Level-1B Product GLAS_Alt L1A Elevation product file.
*Elevation only

gla09*_.dat Level-2 Product GLAS_Atm L2 Atmosphere product file.
*Optional - Elevation only

gla11*_.dat Level-2 Product GLAS_Atm L2 Atmosphere product file.
*Optional - Elevation only

GLAS_Alt may be run with either anc04, anc08, and anc09, or with anc20.

Table 10-1 GLAS_Alt Inputs (Continued)

File Spec Type Source Short Description

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-4 March 2006

Table 10-2 GLAS_Alt Outputs

File Spec Type Destination Short Description

gla05*.dat L1B Alt Product Archive/GLAS_Alt The level 1B waveform parameterization
product file. Contains the output from
the waveform characterization proce-
dure and other parameters required to
calculate surface slope and relief char-
acteristics.

gla06*.dat L2 Alt Product Archive/GLAS_Alt L1B elevation data product file. Con-
tains the surface elevation, surface
roughness assuming no slope, surface
slope assuming no roughness and geo-
detic and atmospheric corrections for
the range.

gla12*.dat L2 Alt Product Archive L2 ice sheet altimetry product file. Con-
tains the ice sheet elevation and eleva-
tion distribution calculated from
algorithms fine-tuned for ice sheet
returns.

gla13*.dat L2 Alt Product Archive L2 sea ice altimetry product file. Con-
tains the sea ice freeboard and sea ice
roughness calculated from algorithms
fine-tuned for sea ice returns.

gla14*.dat L2 Alt Product Archive L2 land altimetry product file. Contains
the land elevation and land elevation
distribution calculated from algorithms
fine-tuned for land returns.

gla15*.dat L2 Alt Product Archive L2 ocean altimetry product file. Contains
ocean elevation and small-scale rough-
ness calculated from algorithms fine-
tuned for ocean returns.

qap05*.dat L1B Alt Quality QA L1B waveform parameterization quality
file.

qap06*.dat L2 Alt Quality QA L2 elevation data quality file.

qap12*.dat L2 Alt Quality QA L2 ice sheet altimetry quality file.

qap13*.dat L2 Alt Quality QA L2 sea ice altimetry quality file.

qap14*.dat L2 Alt Quality QA L2 land altimetry quality file.

qap15*.dat L2 Alt Quality QA L2 ocean altimetry quality file.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing log file.

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-5 Version 5.0

10.4 GLAS_Alt

The basic GLAS_Alt processing algorithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Write version info (Write_LibVer, Write_AncVer)

• Read ancillary files (ReadAnc)

• Write execution flags information (Write_eCntl)

• Until all data are processed...

- Input data to process (ReadData)

- Execute the WF_Manager, based on Control

- Execute the Elev_Manager, based on Control

• Close all files and generate summaries (MainWrap)

10.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• ReadData

• MainWrap

10.5 Waveform Manager (WF_Mgr)

The Waveform Manager controls execution of the waveform subsystem, passes vari-
ables from the input GLA01 product to the output GLA05 product, and handles gran-

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-6 March 2006

ule start/stop. The manager controls execution of the waveform science algorithms
based on flags received from GLAS_Alt. The manager is only executed if at least one
of its execution flags is set.

WF_Mgr is passed arrays of output file control structures and execution flags. It
accesses product and algorithm data directly from the requisite public data struc-
tures. Execution flags are defined in eCntl_mod; file control structures defined in the
fCntl_mod component of the exec_lib, and product/algorithm data within the
GLA01 and GLA05 components of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, wrap-up and final QA routines are called and the
product and QA files are closed. If another granule of the same type has been speci-
fied in the control file, the manager opens the appropriate product and QA files and
loops to verify the stop time of the new granule is greater than the nominal time of
data.

Next, the manager executes several science algorithms based on its execution flags
and data availability. These algorithms are discussed in the WF_Subsystem section.
Each returns a flag indicating if the GLA05 data product should be written. Values
which are passed directly from one product to another are set appropriately.

QA routines are called to process QA information and the WriteWF routine is called
with the appropriate flags to write data to the product file. Before writing a record,
WriteWF verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal
time is less than the start time, the data record is not written. An appropriate error
message is written to ANC06 if a record is skipped.

Figure 10-1 "WFMgr Structure Chart" provides an overview of the WFMgr and the
subroutines it calls.

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-7 Version 5.0

Figure 10-1 WFMgr Structure Chart

WFMgr

WF_granule_init

QAP05_granule_init

WF_granule_check

WF_qap_check

Check_WF_APIDs

C_SetCalibVars

Set_Filtnum

Flip_WF

Set_CompParm

SetBias

SetPADParms

GLAS_Error

W_Assess

get_anc08_degrades

get_anc09_degrades

c_Beam_Sun_Ang

W_FunctionalFt

WriteWF

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-8 March 2006

10.5.1 WFMgr Subprocesses

WF_Granule_Init Initialize all WF granules

QAP05_granule_init Initializes QA arrays for GLA05

WF_granule-check Checks ALT and ATM waveform granules for EOF

WF_qap_check Checks WF QAP for wrapup

Check_WF_APIDs Checks WF APIDs and sets availability flags
appropriately

C_SetCalibVars Initialize laser energy calibration coefficients

Set_Filtnum Sets filter number based on waveform type

Flip_WF Flips the waveforms

Set_CompParm Sets digitizer from instrument state

SetBias Stets bias and times due to delays and ANC09 correction

SetPADParms Sets parameters derived from PAD

GLAS_Error GSAS standard error reporting utility

W_Assess Major WF subroutine that performs a general
assessment of the various aspects of the waveforms

get_anc08_degrades Retrieves POD degradation data from anc08 file header

get_anc09_degrades Retrieves PAD degradation data from anc09 file header

c_Beam_Set_Ang Calculate laser coelevation, azimuth, and sun angle

W_FunctionalFt Major WF subroutine that calculates two
(land plus “other”) functional least squares fits to a
Gaussian for each waveform

Write_WF Writes a GLA05 WF record

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-9 Version 5.0

10.6 Elevation Manager (Elev_Mgr)

The Elevation Manager controls execution of the Elevation subsystems, passes vari-
ables from the input GLA05/06 product to the output GLA06 and GLA12-15 prod-
ucts, and handles granule start/stop. The manager controls execution of the
elevation science algorithms based on flags received from GLAS_Alt. The manager is
only executed if at least one of its execution flags is set. Elev_Mgr is passed arrays of
output file control structures and execution flags. It accesses product and algorithm
data directly from the requisite public data structures. Execution flags are defined in
eCntl_mod; file control structures defined in the fCntl_mod component of the
exec_lib, and product/algorithm data within the GLA05/06 and GLA12-15 compo-
nents of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, wrap-up and final QA routines are called and the
product and QA files are closed. If another granule of the same type has been speci-
fied in the control file, the manager opens the appropriate product and QA files and
loops to verify the stop time of the new granule is greater than the nominal time of
data.

After checking the granule times, processing begins. The manager calls common
library geolocation and DEM routines to compute position and elevation and tide
routines to get tide data.

Next, the manager calls routines to check the surface type of the data and executes
several science algorithms based on its execution flags and data availability. These
algorithms are discussed in the DFD section. Each returns a flag indicating if the
appropriate data product should be written. Values which are passed directly from
one product to another are set appropriately.

QA routines are called to process QA information and the WriteElev routine is called
with the appropriate flags to write data to the product files. Before writing a record,
WriteElev verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal
time is less than the start time, the data record is not written. An appropriate error
message is written to ANC06 if a record is skipped.

Figure 10-2 "ElevMgr Structure Chart"provides an overview of the ElevMgr and the
subroutines it calls.

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-10 March 2006

Figure 10-2 ElevMgr Structure Chart

elev_granule_init

Elev_granule_check

Elev_qa_check

avg_tp_data

convert_ranges

set_std_rng_params

set_alt_rng_params

StdFitComps

AltFitComps

SolarAngle

SetAtmParams

AtmReflCorr

PreGeoLoc

getFirstLastValid

Compute_Geoid

Compute_Trop

GetSurfType

CalcSumCorrs

GeoLocStd

GeoLocAlt

C_Azimuth_FootPrnt1s

ComputeTideCorr

CalcSatCor

SetElevFlags

Pass_GLA06

Fetch_DEM_Vals

Elev_AT_QAP

WriteElev

ElevMgr

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-11 Version 5.0

10.6.1 ElevMgr Subprocesses

Elev_Granule_Init Initialize all elevations (6,12-15) granules

Elev_granule_check Checks ALT and ATM waveform granules for EOF

Elev_qa_check Checks Elevation QAP for wrapup

avg_tp_data Checks WF APIDs and sets availability flags appropriately

convert_ranges Convert GLA05 range from time units to distance

Set_std_rng_params Set standard-fit range parameters on GLA06,12,13,15 from con-
verted GLA05 ranges

Set_alt_rng_params Set alternate-fit range parameters on GLA14 from converted
GLA05 ranges

StdFitComps Convert GLA05 standard fit parameters from time units to distance
units and set corresponding GLA06,12,13,15 parameters

AltFitComps Convert GLA05 standard fit parameters from time units to distance
units and set corresponding GLA14 parameters

SolarAngle Set GLA06 sun angle value from attitude and ephemeris

SetAtmParams Propagate selected atmospheric parameters from GLA09 and
GLA11

AtmReflCorr Compute reflectivity correction

PreGeoLoc Perform re-geolocation if called for or if POD has been re-interpo-
lated

getFirstLastValid Get first and last valid waveform indices

ComputeGeoid Compute geoid elevations

ComputeTrop Compute range corrections due to tropospheric conditions

GetSurfType Compute surface-type flags based on location

CalcSumCorrs Calculate the sum of all range corrections

GeoLocStd Perform geolocation for standard waveform fit

GeoLocAlt Perform geolocation for alternate waveform fit

c_Azimuth_FootPrnt1s Compute the azimuth of a 1-second trace of the satellite footprint
along the orbit track

ComputeTideCorr Compute elevation corrections due to tidal forces

CalcSatCorr Compute saturation corrections and set saturation correction flag

SetElevFlags Sets an assortment of elevation-related flags based on data values

Pass_GLA06 Sets pass-through variables in GLA12-15 from GLA06 values

Fetch_DEM_Vals Retrieve high resolution DEM elevation values

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-12 March 2006

Elev_AT_QAP Update QAP along-track parameters for GLA06,12-15

WriteElev Writes elevation record for GLA06,12-15

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-13 Version 5.0

10.7 PGE/Manager Implementation Details

This section discusses specific aspects of the PGE/Manager implementation which
should be addressed in more detail.

10.7.1 GLA05 Requirement

The original concept of GLAS_Alt was to enable the Elev_Mgr to create GLA12-15
directly from GLA06. However, due to data dependencies, GLA05 input is required
(as well as GLA06) when creating GLA12-15.

10.8 WF_Subsystem

The Level 1B Waveforms subsystem computes the geolocation, and produces wave-
form-based information required to produce the elevation products (GLA05_SCF)

The Level 1B Waveforms subsystem is divided into two main processes (W_Assess,
and W_FunctionalFt) which generate waveform-based information required to pro-
duce the elevation products (GLA05). A control flag (w_ctrl) is passed to processes
W_Assess and W_FunctionalFt indicating whether processing will be land algorithm
only, other-than-land algorithm only, or both, and whether the subprocess W_DetGeo
will be called. In addition to producing waveform-based information, processes
W_Assess and W_FunctionalFt generate QA data for inclusion in the summary infor-
mation product.

10.8.1 Assess Waveforms (W_Assess)

W_Assess performs a general assessment of the waveforms including: a check for
saturation; calculating various shape characteristics; preliminary uncorrected lati-
tude, longitude, and elevation; reflectance; and calculating the reference range, mini-
mum range offset (signal begin), preliminary uncorrected range offset (signal end),
and the threshold retracker range offset.

Input arguments:

 w_ctrl Control flags

 l_PADflag Indicates if the PAD file is being used (same as g_havePAD)

 i_numWFinFrame Number of WF in a frame (normally 40)

 i_numGinWF Number of gates in WF (either 200, or 544)

 r_wf_trans Transmitted pulse in volts

 r_wf_rec Received WF in volts

 i_wf_rec Received WF in raw counts

 i_cr Compression values

 i_ndxCr Gate index where second compression starts

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-14 March 2006

d_bgNoiseOb Mean background noise level as measured by instrument

 d_sDevNsOb Standard deviation of background noise level calculated by the on-board
algorithm

d_FilterOb Filter width where instrument found signal (ns)

d_TimeGate1Tr Digitizer time of gate 1 of transmitted pulse (ns)

d_TimeGateLRec Digitizer time of last gate of received WF (ns)

d_UTC1stPTime UTC of 1st transmitted pulse (sec)

 d_dShotTime Time increment from d_UTC1stPTime for shots 2-40 (microsec)

d_PADpntgVect Precision attitude pointing vector

d_areaTele Telescope Area (~0.709 m^2)

d_optTrans Optics Transmission

d_nrgRec Energy of received WFs

d_gain_recv Received gain

d_gainTr Transmitted gain

d_nrgTr Energy of transmitted pulses

 anc_param_d Dependent Ancillary parameters

anc_param_indep Independent Ancillary parameters

d_dTHiRes Time in ns of one digitizer gate

i_implement33_Ndx Shot where d_rDelay_digtzr, d_plRbias, and d_dTHiRes change

 i_gval_rcv Received gain in raw counts

d_RecNrgAll_EU Echo pulse energy

d_rDelay_digtzr Prelaunch internal range delay in ns

d_plRbias Post launch range bias in ns

d_latPreUncor Preliminary uncorrected latitude

d_longPreUncor Preliminary uncorrected longitude

d_elevPreUncor Preliminary uncorrected elevation

 i_elvFlg Source of elevation indicator flag

 l_RcorrFlgInt FALSE=d_rDelay_digtzr not applied

 l_RcorrFlgPL FALSE=d_plRbias not applied

 l_Wfqual An array of 31 flags for each waveform. These flags include: no signal, no
leading edge, no trailing edge, no transmitted pulse, land, ocean,
icesheet, seaice, no fit, noise and standard deviation of noise are calcu-
lated, maximum iterations during fit, region selected for waveform fit, and
invalid waveform.

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-15 Version 5.0

Output arguments:

d_latPreUncor Preliminary uncorrected latitude

d_longPreUncor Preliminary uncorrected longitude

d_elevPreUncor Preliminary uncorrected elevation

 i_elvFlg Source of elevation indicator flag

 l_RcorrFlgInt FALSE=d_rDelay_digtzr not applied

 l_RcorrFlgPL FALSE=d_plRbias not applied

 l_Wfqual An array of 31 flags for each waveform. These flags include: no signal, no lead-
ing edge, no trailing edge, no transmitted pulse, land, ocean, icesheet, seaice,
no fit, noise and standard deviation of noise are calculated, maximum iterations
during fit, region selected for waveform fit, and invalid waveform.

d_dDigComp Offset of last gate of received WF from last digitized gate last received gate
time is not same as last digitized gate time if there is compression

d_relTime Relative time of each gate in ns from gate 1 (earliest time) of received WF tak-
ing account of the compression information. For example, if the original gates
were one nanosecond apart, and there was a compression ratio of 2, then the
time of gate 1 (r_wf_rec[1]) would be the average of the times of the first two
digitizer gates ((0+1)/2 or 0.5), and the time of gate 2 would be the average of
the times of the third and fourth digitizer gates ((2+3)/2 or 2.5).

d_wf_sm Smoothed WF

d_maxSmAmp Maximum amplitude of smooth WF

 d_pcntSat Percent saturation of WF - set to invalid

d_bg_Noise Either the observed noise (d_bgNoiseOb), or the calculated background noise.
The calculation is performed if anc07%i_nsCal is set, or if the observed noise is
zero or invalid and the waveform is not invalid.

d_sDevNoise Either the observed noise standard deviation (d_sDevNsOb), or the standard
deviation of the calculated noise. The calculation is performed if
anc07%i_nsCal is set, or if the observed noise is zero or invalid and the wave-
form is not invalid.

d_refRng Reference range in ns - time from Tr pk to last gate

d_maxRngO Offset to be added to d_refRng to give the time of the last threshold crossing
(closest to the ground, signal end)

d_minRngOff Offset to be added to d_refRng to give the time of the first threshold crossing
(closest to the spacecraft, signal begin)

 d_preRngOff Same as d_maxRngOff

d_thRtkRngOff Offset to be added to d_refRng to give the retracker threshold range

 i_ndxBegin Index of beginning of signal

 i_ndxEnd Index of end of signal

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-16 March 2006

d_areaRecWF Area of signal return of r_wf_rec from sig begin to sig end

d_maxRecAmp Maximum amplitude of recieved WF

d_skew Skewness of r_wf_rec from sig begin to sig end

d_kurt Kurtosis of r_wf_rec from sig begin to sig end

d_centroid Centroid of r_wf_rec from sig begin to sig end

d_maxTrAmp Maximum amplitude of transmitted pulse

d_areaTr Area of gaussian fitted to transmitted pulse

d_locTr Centroid of transmitted pulse (ns)

d_tx_sm Smoothed transmitted pulse

d_minTxAmp Min amp for transmitted pulse

d_trTime Relative time of each gate in ns of transmitted pulse

 i_ndxTrB Index of beginning of transmitted pulse

 i_ndxTrE Index of end of transmitted pulse

d_sDevNsTx Std dev of noise for transmitted pulse

 d_nsTx Noise for transmitted pulse

d_skewTr Skewness of transmitted pulse gaussian

d_PODposVect Precision orbit position vector

d_reflctUncorr Reflectivity, not corrected for atmosphere, calculated using the received energy
from the maximum peak

d_reflctAllUnc Reflectivity, not corrected for atmosphere, calculated using the received energy
from all peaks

 d_centroidInstr Instrument centroid of last peak

 l_PODflag Returned by C_IntrpPOD, indicates the status of the orbit information

 l_offNadirFlag Returned by C_CalcSpLoc, indicates if the spacecraft is pointed off nadir.

 i_usePAD From C_CalcSpLoc, array indicating if PAD used for each shot

 l_land True indicates the possible presence of land

 l_ocean True indicates the possible presence of ocean

 l_icesheet True indicates the possible presence of icesheet

 l_seaice True indicates the possible presence of seaice

 l_badFrame(1) True if all WFs in this record have no signal

 l_badFrame(2) False if all WFs in this record are valid

 i_errSeverity Error flag from C_IntrpPOD, C_GetRegions, C_CalcTNrg, or C_CalcSpLoc

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-17 Version 5.0

10.8.1.1 W_Assess Subprocesses

W_Assess calls the following subprocesses:

10.8.1.2 Calculate the WF Functional Fit (W_FunctionalFt)

W_FunctionalFt calculates two functional fits for each waveform, one for land and
one for all other surface types. Various fit related parameters are returned including
the initial number of potential peaks found, the number of gaussian peaks (as many
as six for the alternate or land fit, and up to two for the standard fit), the standard
deviation of fit, and flags indicating saturation, whether the maximum number of
iterations was exceeded, or if there was a fit.

Input arguments:

W_CalcRelTime Calculates the d_relTime array

W_CharTrPulse Characterize the transmitted pulse

W_CalcNoise Calculates the noise

W_CalcRefRng Calculates the reference range

W_SmoothPreRC Smooth the WF's with a gaussian filter

W_DetGeo Determine the geolocation of each shot

C_GetRegions Determines the region types of each shot

W_CalcCtMxArAs Calculates centroid, maximum amplitude, area, skew & kurtosis for the WF
between signal_begin (i_ndxBegin) & signal_end (i_ndxEnd)

W_CalcInstrCt Calculates the instrument centroid of the maximum amplitude peak

W_Ck4Sat Check for waveform saturation

W_CalcThRetrkr Calculates offset of retracker threshold

C_CalcTNrg Calculates the transmitted energy

W_CalcReflct Calculates reflectance

w_ctrl Control flags

i_numWFinFrame Number of WF in a frame (normally 40)

i_numGinWF Number of gates in WF (either 200, or 544)

r_wf_rec Received WF in volts

d_wf_sm Smoothed WF

r_wf_trans Transmitted pulse in volts

d_tx_sm Smoothed transmitted pulse

d_minTxAmp Min amp for transmitted pulse

d_sDevNsTx Std dev of noise for transmitted pulse

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-18 March 2006

d_nsTx Noise for transmitted pulse

d_relTime WF taking account of the compression information. For example, if the origi-
nal gates were one nanosecond apart, and there was a compression ratio of
2, then the time of gate 1 (r_wf_rec[1]) would be the average of the times of
the first two digitizer gates ((0+1)/2 or 0.5), and the time of gate 2 would be
the average of the times of the third and fourth digitizer gates ((2+3)/2 or 2.5).

i_ndxBegin Index of beginning of signal

i_ndxEnd Index of end of signal

d_bg_Noise Either the observed noise (d_bgNoiseOb), or the calculated background
noise. The calculation is performed if anc07%i_nsCal is set, or if the observed
noise is zero or invalid and the waveform is not invalid.

d_sDevNoise Either the observed noise standard deviation (d_sDevNsOb), or the standard
deviation of the calculated noise. The calculation is performed if
anc07%i_nsCal is set, or if the observed noise is zero or invalid and the wave-
form is not invalid.

l_land True indicates the possible presence of land

l_ocean True indicates the possible presence of ocean

l_icesheet True indicates the possible presence of icesheet

l_seaice True indicates the possible presence of seaice

d_UTCtime UTC time – used only for debug not for calculations

d_latPreUncor Preliminary uncorrected latitude

d_longPreUncor Preliminary uncorrected longitude

d_elevPreUncor Preliminary uncorrected elevation

d_centroid Centroid of r_wf_rec from sig begin to sig end

d_dDigComp Offset of last gate of received WF from last digitized gate last received gate
time is not same as last digitized gate time if there is compression

anc_param_dep Dependent Ancillary parameters

anc_param_indep Independent Ancillary parameters

l_Wfqual An array of 31 flags for each waveform. These flags include: no signal, no
leading edge, no trailing edge, no transmitted pulse, land, ocean, icesheet,
seaice, no fit, noise and standard deviation of noise are calculated, maximum
iterations during fit, region selected for waveform fit, and invalid waveform.

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-19 Version 5.0

Output arguments:

l_Wfqual An array of 31 flags for each waveform. These flags include: no signal, no
leading edge, no trailing edge, no transmitted pulse, land, ocean, icesheet,
seaice, no fit, noise and standard deviation of noise are calculated, maximum
iterations during fit, region selected for waveform fit, and invalid waveform.

d_estTxParms Estimated parameters for fit of transmitted pulse

d_parmTr Noise,amplitude, centroid, and sigma of transmitted pulse gaussian

d_sDevFitTr Standard deviation of fit of d_parmTr to transmitted pulse

d_solnTrSgms Sigmas of fit of d_parmTr to transmitted pulse

d_parm noise, 6x(amplitude,loc,sigma). Within this subsystem, locs are relative to
gate 1, just before returning to WFMgr, they are converted to offsets that are
to be added to the reference range.

i_nPeaks Actual number of peaks in in d_parm

d_estParms Estimated parameters before the fit

i_nPeakInit Number of peaks initially found before the fitting process

i_rank Rank of peaks

d_solnSigmas Solution sigmas for each parameter in d_parm

d_wfFitSDev std deviation of fit

l_fit_nogo True if fit process was not completed

l_fit_maxiter True if fit process was stoped after maxiter iterations

i_errSeverity Error flag from W_InvertM in W_LsqFit

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-20 March 2006

10.8.1.3 W_FunctionalFt Subprocesses

W_FunctionalFt calls the following subprocesses:

W_ParamWithFit calls the following subroutines:

W_EstParams calls the following subroutines:

W_Estimates calls the following subroutines:

W_PerformFit calls the following subroutines:

W_ParamWithFit Calculates the maximum amplitude for each WF, and over-
sees the fitting process for first the alternate set of parame-
ters, and then the standard set of parameters.

W_Ck4HiSat Determines the saturation type, if any, for each WF

W_EstParams Estimates the WF model parameters for W_ParamWithFit

W_PerformFit Fit the gaussian functions to the recieved waveforms

W_RankAllPeaks

W_Calc2ndDer Calculates the second derivatives of the WF's

W_Estimates Determines the initial number of peaks in the WF. Combine
peaks until there are no more than i_maxfit and make
parameter estimates

W_EstNew Determine the number of peaks in the WF. Combine close
peaks, then choose the largets I_maxfit peaks and make
parameter estimates.

W_combinePeak Combines one peak with the following peak

W_combinePeaks Combines multiple peaks

W_RankPeaks Assign a rank to each peak

W_LsqFit Perform least squares fit for one WF

W_RmPeaks Remove peaks

W_combinePeaks Combines multiple peaks

W_modPnW Modify estimated amplitude for maxAmp, and modify the
weights so that a better fit to the leading edge will be pref-
ered

W_NormWF Normalize waveform

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-21 Version 5.0

W_LsqFit calls the following subroutines:

10.9 Elev_Subsystem

The Levels 1B and 2 Elevation Computation subsystem generates all elevation Stan-
dard Data Products, associated Processing Quality Assessment data, and related
computations. The Level 1B subsystem creates parameters for a Level 1B time-
ordered global product (GLA06) with a geodetically corrected standard elevation.
The Level 2 subsystem determines region specific (ice sheet, sea ice, land, and ocean
regions) elevation parameters for Level 2 time-ordered regional products (GLA12,
GLA13, GLA14, and GLAS15).

10.9.1 L1B DFDs and their Descriptions

Below is a breakdown of each of the elevation processes into subprocesses. Each sub-
process corresponds to a Fortran 90 subroutine that is called by the elevation man-
ager.

10.9.1.1 Calculate Coelev, Azimuth & Sun Angle (C_Beam_Sun_Ang)

Calculate the laser beam coelevation and azimuth and sun angle given the geodetic
lat, lon, height above ellipsoid and time.

10.9.1.2 Interpolate POD (C_IntrpPOD)

Utilizes the POD file (ANC08), and time to interpolate the precision vectors for use in
geolocation.

10.9.1.3 Tide Correction Routines (E_CalcLoadTD, E_CalcOceanTD,
E_CalcEarthTD)

The tide correction routines consists of three processes which calculate the elevation
corrections due to the effects of the load tide, ocean tide, and earth tide. Each process
is triggered by a control flag. Following is a brief description of each of the process:

W_UnNormWF Un-normalize waveform

W_CalcSDev Calculate goodness of fit

W_CkParms Check the waveform parameters for unreasonable values

W_CalcFnP Calculate the value of the function and the partial derivatives
with respect to the function parameters

W_CalcArP Calculate the area and the partial derivatives of the area
with respect to the function parameters

W_InvertM Invert iDim x iDim matrix A

W_CkConv Check the waveform parameters for convergence

W_CalcSDev Calculate goodness of fit

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-22 March 2006

10.9.1.3.1 Compute Load Tide Correction (E_calcLoadTd)

Utilizes the load tide coefficients file to compute the coefficients for the given spot
location. Then calculates the load tide correction using the given time.

10.9.1.3.2 Compute Ocean Tide Correction (E_calcOceanTd)

Utilizes the ocean tide coefficients file to compute the coefficients for the given spot
location. Then calculates the ocean tide correction using the given time (time).

10.9.1.3.3 Compute Earth Tide Correction (E_calcEarthTd)

Utilizes the earth tide coefficients file to compute the coefficients for the given spot
location. Then calculates the earth tide correction using the given time.

10.9.1.4 Calculate Std surface Elevation and spot loc (C_CalcSploc)

Utilizes the results from the previous three processes along with the spacecraft posi-
tion in ITRF (Inertial Terrestrial Reference Frame), the laser attitude in ITRF, reference
range, and ice sheet range offset to calculate surface independent elevation and spot
location.

10.9.1.5 Interpolate Geoids (C_GetGeoid)

Utilizes the spot location to interpolate for the geoid height at that location. This is a
common routine used by several processes.

10.9.1.6 Calculate Troposphere Corrections (E_CalcTrop)

Utilizes the met data files, spot location, and elevation (with respect to the geoid), to
interpolate spatially for parameters used in the calculation of the tropospheric correc-
tions. These corrections are then temporally interpolated to get the tropospheric cor-
rections for the given time.

10.9.1.7 Calculate Angle (C_CalcAngle)

Calculates the angle between the POD and range vectors.

10.9.1.8 10.9.1.8 Identify Regions (C_GetRegions)

Utilizes the region masks file and spot location to determine the valid regions for the
spot location

10.9.1.9 10.9.1.9 Interpolate DEM (E_CalcDEM)

Utilizes the spot location, the Global DEM file, and the DEM mask file to determine
the DEM elevation for the specified spot.

10.9.1.10 10.9.1.10 Calculate Slope & Roughness (E_CalcSlope)

Utilizes the sigma of the gaussian waveform, transmitted pulse width, and receiver
impulse width to calculate the slope and roughness.

GLAS_Alt GSAS Detailed Design Document

March 2006 Page 10-23 Version 5.0

10.9.1.11 Create L1B Quality Statistics (update_GLA06QA)

Combines QA data from the previous six processes to create QA statistics for the
Level 1B Elevation Computation subsystem

10.9.1.12 10.9.1.12 Create L1B Quality Statistics

Combines QA data from the previous six processes to create QA statistics for the
Level 1B Elevation Computation subsystem

10.9.2 L2 DFDs and their Descriptions

Below is a breakdown of each of the elevation processes into subprocesses. Each sub-
process corresponds to a Fortran 90 subroutine that is called by the elevation man-
ager

10.9.2.1 Calc Reg Params (E_OceanParm, E_LandParm)

Calculates the region specific parameters that have not already been determined ear-
lier by the other routines.

10.9.2.2 Create L2 Elevations QA (update_GLA12QA, update_GLA13QA,
update_GLA14QA, update_GLA15QA)

Combines QA data from the processes 5.2.2, 5.2.3, and 5.2.4 to create QA statistics for
the Level 2 Elevation Computation subsystem.

10.9.2.3 Create Elevation QA Statistics (wrapUpQAP06, wrapUpQAP12_15)

Wraps up and writes to file the QA Statistics for the Level 1B and 2 Elevation Compu-
tation subsystems. WrapUpQAP06 will handle the Level 1B subsystem, while
wrapUPQAP12_15 will handle the Level 2 subsystem.

GSAS Detailed Design Document GLAS_Alt

Version 5.0 Page 10-24 March 2006

March 2006 Page 11-1 Version 5.0

Section 11

GLAS_Atm

11.1 Overview

GLAS_Atm is a core GSAS PGE. It uses the Atmosphere subsystem to create GLAS
Level 1B and 2 data from the Level 1 GLAS atmosphere data products. GLAS_Atm
will read the GLA02 file created by GLAS_L1A and the ANC36 file created by
Atm_Anc to create the GLA07-11 products.

11.2 Function

The function of the Levels 1B and 2 Atmosphere Computations subsystem is to create
atmosphere parameters for the standard data products GLA07-11 and to generate
associated metadata and quality assessment (QA) data.

11.3 Design Approach

The following design criteria are specific to GLAS_Atm

• GLAS_Atm fully uses the standard routines from the model GSAS PGE.

• GLAS_Atm can perform partial processing. However, due to the 20 second
buffering, the Level 2 data is always processed together even under reprocess-
ing scenarios. Data products GLA08-11 are always created together.

• The Level 1B product (GLA07) is output at one record per 1 sec.

• The processing of Level 2 data is buffered for 20 seconds irrespective of time
gaps between data records.

• The Level 2 products (GLA08-11) are output at one record per 4 seconds.

• Cloud products are reported at once per 4 seconds, 1 second, and 5 Hz from 21
to 0 km, and at 40 Hz below 10 km.

• Aerosol products are reported at once per 4 seconds from 21 to 0 km and at
once per 20 sec from 41 to 21 km.

• Twenty second averaging requires that at least ten seconds of valid profiles are
available. Likewise, four second averaging requires that at least two seconds
of valid profiles are available.

• Met data sets at times before and after the time of the profile are interpolated
to the time of the profile. If either of the met data sets are missing, then the
available met data set is used without interpolation. If no met data sets are
available, then standard atmosphere data are used instead

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-2 March 2006

11.4 Input and Output Files

Table 11-1 lists the required inputs to GLAS_Atm. Table 11-2 lists the outputs created
by GLAS_Atm. See the GLAS Data Products Specifications Volumes or GLAS Science
Data Management Plan for details regarding the these files..

Table 11-1 GLAS_Atm Inputs

File Spec Type Source Short Description

anc01*.dat Dynamic Ancillary met_util Meteorological subset files.
Data sets at times before and
after the time of the profile are
interpolated to the time of the
profile. If either of the ANC01
data sets are missing, then the
available ANC01 data set is
used without interpolation. If no
ANC01 data sets are available,
then standard atmosphere data
are used instead.

anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth
Rotation Data File.

anc07*_0000.dat Static Ancillary Science Team Error file.

anc07*_0001.dat Static Ancillary Science Team Global constants file.

anc07*_0002.dat Static Ancillary Science Team Atm constants file.

anc07*_0005.dat Static Ancillary Science Team L1A constants file.

anc08*.dat Dynamic Ancillary UTexas Precision Orbit file.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc12*_0000.dat Static Ancillary Science Team DEM file.

anc12*_0001.dat Static Ancillary Science Team DEM mask file.

anc13*.dat Static Ancillary Science Team Geoid file.

anc18*.dat Static Ancillary Science Team Standard atmosphere file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc30*.dat Static Ancillary Science Team Global aerosol categorization
map file.

anc31*.dat Static Ancillary Science Team Aerosol tropospheric classifica-
tion map file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc35*.dat Static Ancillary Science Team Ozone file.

anc36*.dat Dynamic Ancillary atm_anc Atmosphere Calibration file.

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-3 Version 5.0

anc38*.dat Static Ancillary Science Team Multiple-scattering table file.

anc45*_0002.dat Static Ancillary Science Team GLA02 metadata input file.

anc45*_0007.dat Static Ancillary Science Team GLA07 metadata input file.

anc45*_0008.dat Static Ancillary Science Team GLA08 metadata input file.

anc45*_0009.dat Static Ancillary Science Team GLA09 metadata input file.

anc45*_0010.dat Static Ancillary Science Team GLA10 metadata input file.

anc45*_0011.dat Static Ancillary Science Team GLA11 metadata input file.

Control File Control ISIPS Operations Control file.

gla02*_.dat Level-1A Product GLAS_L1A L1A Atmosphere product file.

Table 11-2 GLAS_Atm Outputs

File Spec Type Destination Short Description

gla07*.dat L1B Atm Product Archive L1B Global Backscatter product
file. Contains full 532 nm and
1064 nm calibrated attenuated
backscatter profiles at 5 times
per second, and from 10 to -1
km, at 40 times per second.
Also included will be calibration
coefficient values and molecular
backscatter profiles at once per
second.

gla08*.dat L2 Atm Product Archive L2 Planetary Boundary Layer
and Elevated Aerosol Layer
Height product file. Contains
elevated aerosol layer height
data consisting of top and bot-
tom heights for up to 5 aerosol
layers below 20 km at once per
4 seconds, and top and bottom
heights for up to 3 aerosol layers
above 20 km at once per 20
seconds.

Table 11-1 GLAS_Atm Inputs (Continued)

File Spec Type Source Short Description

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-4 March 2006

11.5 Functions

shows the top-level structure chart of GLAS_Atm. The basic processing algorithm is
summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

gla09*.dat L2 Atm Product Archive L2 Cloud Layer Height product
file. Contains top and bottom
heights for up to 10 layers below
20 km at once per 4 seconds,
once per second, 5 times per
second, and 40 times per sec-
ond (below 4 km only). Ground
heights will also be provided at
each resolution.

gla10*.dat L2 Atm Product Archive L2 Aerosol Vertical Structure
product file. Contains cloud and
aerosol backscatter and extinc-
tion cross section profiles.

gla11*.dat L2 AtmProduct Archive L2 Thin Cloud/Aerosol product
file. Contains optical depths for
clouds for up to 10 layers, the
planetary boundary layer, and
aerosols for up to 8 layers.

qap07*.dat L2 Atm Quality QA L1B Global Backscatter quality
file.

qap08*.dat L2 Atm Quality QA L2 Planetary Boundary Layer
and Elevated Aerosol Layer
Height quality file.

qap09*.dat L2 Atm Quality QA L2 Cloud Layer Height quality
file.

qap10*.dat L2 Atm Quality QA L2 Aerosol Vertical Structure
quality file.

qap11*.dat L2 Atm Quality QA L2 Thin Cloud/Aerosol quality
file.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

Table 11-2 GLAS_Atm Outputs (Continued)

File Spec Type Destination Short Description

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-5 Version 5.0

• Print the control file (Print_Cntl)

• Write version info (Write_LibVer, Write_AncVer)

• Read ancillary files (ReadAnc)

• Write execution flags information (Write_eCntl)

• Until all data are processed...

- Input data to process (ReadData)

- Execute the Atm_Manager

Close all files and generate summaries (MainWrap).

11.5.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• Write_eCntl

Figure 11-1 GLAS_Atm Structure Chart

GLAS_Atm
PGE Core
Routines

MainInit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl

Write_LibVer
ReadANC

Write_AncVer
Write_eCtrl
ReadData

Atm_Mgr
checkoutput
(PGE core)

MainWrap

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-6 March 2006

• ReadData

• MainWrap

11.5.2 Atm Manager (Atm_Mgr)

The Atm Manager controls execution of the Atmosphere subsystem, passes variables
from the input GLA02 product to the output GLA07-11 products, and handles gran-
ule start/stop. The manager controls execution of the science algorithms based on
flags received from GLAS_Atm. Figure 11-2 shows the Atm_Mgr structure chart.

Figure 11-2 Atm_Mgr Structure Chart

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-7 Version 5.0

Figure 11-3 shows a flow chart of the Atm Manager..

Figure 11-3 ATM Manager - Part 1

Call E_GetGeoid
to get geoid

Call C_CalcSpLoc
to get satellite ht

Call C_interp_pod
to get POD

Call A_met_interp
to get MET profs

Call A_mbscs
to get molec profs

Call A_rebin_lid
 to vert align profs

Call A_bscs
to get back profs

if (bs_to_end)

AtmMgr

If (start_of_processing) initialize headers
Loop through granule times: if current time >= stop time

for GLA07: set end_of_1s_granule flag to 1
Increment to next granule for GLA07

for GLA08-11: set end_of_4s_granule flag to 1

if (bs_only)

True

True

Call A_qa_G7 (end_of_1s_granule flag, end_of_processing flag)
to get QA stats for GLA07

if (end_of_1s_granule) average and write QA , then sum
if (end_of_processing) average and write QA

else sum

if (bs_only)
True

if (end_of_processing)
True

if (end_of_1s_granule == 1)
Set end_of_1s_granule flag to 0

Increment to next QA granule for GLA07

Call WriteATM (i_write_ctrl) to write GLA07 product

if (.not. no_pod)

if (bs_to_end)

if (bs_to_end)

OR

OR

if (bs_only)

ANDOR

if (end_of_processing)

True

True

Set (i_write_ctrl) = 1 (write GLA07)

Call A_cal_cofs
to get calib cofsif (bs_only)

True
if (bs_to_end)

OR

Call E_CalcDEM
to get DEM

Call C_CalcSpLoc
to get lat/lon/elev

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-8 March 2006

Figure 11-4 ATM Manager - Part 2

Call A_aer_lays
to get aer lays

Call A_aer_opt_prop
to get optical properties

Call A_cld_lays
to get cld hts

Call A_pbl_lay
to get PBL lay

Call A_buff_data (end_of_4s_granule flag, end_of_processing flag)
to buffer 20 secs of data and pass-throughs for 4 sec products

Set i_complete_buf to 0

Return

if (cld_to_end)if (bs_to_end)

Fill 20 sec tmp buffer

Output 20 sec output arguments
Clear 20 sec tmp buffers

Reset time t(1)
Set i_complete_buf to 1

Call A_qa_G8-11 (end_of_4s_granule flag, end_of_processing flag, i_qa_ctrl))
to get QA stats for GLA08-11

if (end_of_4s_granule or end_of_processing) add to sums, then average and write QA
else add to sums

Call WriteATM (i_write_ctrl) to write GLA08-11 products

if (end_of_4s_granule == 1)

if (time since t(1) <= 20 s)

True

False

Set end_of_4s_granule flag to 0
Increment to next granule for GLA08-11

Increment to next QA granule for GLA08-11

if (i_complete_buf == 1)
False

if (end_of_processing)

if (end_of_4s_granule == 1)

True

True

Go to to start of buffering
if (end_of_processing)

True

Set (i_write_ctrl) = 2 (write GLA08-11)

False

OR

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-9 Version 5.0

Atm_Mgr is passed arrays of output file control structures and execution flags. It
accesses product and algorithm data directly from the requisite public data struc-
tures. Execution flags are defined in eCntl_mod; file control structures defined in the
fCntl_mod component of the exec_lib, and product/algorithm data within the
GLA02 and GLA07-11 components of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, wrap-up and final QA routines are called and the
product and QA files are closed. If another granule of the same type has been speci-
fied in the control file, the manager opens the appropriate product and QA files and
loops to verify the stop time of the new granule is greater than the nominal time of
data.

After checking the granule times, processing begins. The manager calls A_cal_coefs
to get calibration coefficients from ANC36. It then calls common library geolocation
and DEM routines to compute position and elevation and A_interp_met to get mete-
orological data.

Next, the manager buffers the data and executes several science algorithms based on
its execution flags and data availability. These algorithms are discussed in the DFD
section. Each returns a flag indicating if the appropriate data product should be writ-
ten. Values which are passed directly from one product to another are set appropri-
ately.

QA routines are called to process QA information and the WriteAtm routine is called
with the appropriate flags to write data to the product files. Before writing a record,
WriteAtm verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal
time is less than the start time, the data record is not written. An appropriate error
message is written to ANC06 if a record is skipped.

11.6 Atm_Subsystem

The function of the ATM L1B Calculate Calibration Coefficients, Profile Locations,
and DEM process is to geolocate the lidar data, calculate the range of the satellite to
the geoid height, compute the DEM elevation for the profile location, and compute
the 532 nm and 1064 nm calibration coefficients.

The function of the ATM L1B Calculate Backscatter Cross Section Profiles process is
to create parameters for the Level 1b Global Backscatter Data Product GLA07 includ-
ing meteorological profiles and 532 nm and 1064 nm attenuated backscatter cross sec-
tion profiles.

The function of the ATM L1B Create QA Statistics and Write ATM process is to create
Level 1B granule QA statistics, write the QAP07 QA product files, and write the
GLA07 data product files.

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-10 March 2006

The function of the ATM L2 Buffer 20 Seconds process is to buffer 20 seconds of Level
1b data for input into the level 2 processes. The processing of Level 2 data is buffered
for 20 seconds irrespective of time gaps between data records.

The function of the ATM L2 Calculate Layer Heights process is to create parameters
for the Level 2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights
Product GLA08 and the Level 2 Global Cloud Heights for Multi-layer Clouds Prod-
uct GLA09. This process determines, at several resolutions, the top and bottom eleva-
tions of multiple cloud and aerosol layers, ground detection heights, and the
planetary boundary layer (PBL) height.

The function of the ATM L2 Calculate Optical Properties process is to create parame-
ters for the Level 2 Global Aerosol Vertical Structure Data Product GLA10 and the
Level 2 Global Thin Cloud and Aerosol Optical Depths Data Product GLA11. This
process creates cloud and aerosol backscatter cross section profiles and extinction
cross section profiles. Optical depths for multiple cloud and aerosol layers and the
planetary boundary layer are also created.

The function of the ATM L2 Create QA Statistics and Write ATM process is to create
Level 2 granule QA statistics, write the QAP08-11 QA product files, and write the
GLA08-11 data product files

Figure 11-5 Atmosphere Subsystem Processes

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-11 Version 5.0

11.6.1 DFDs and their Descriptions

Below is a breakdown of each of the atmosphere processes into subprocesses. Each
subprocess corresponds to a Fortran 90 subroutine (name in parentheses) that is
called by the atmosphere manager. Below are general comments:

• Subprocesses do not call each other, but are called in turn by the atmosphere
manager (AtmMgr) which is itself a subroutine. Therefore data are passed as
arguments between subprocesses. Likewise, data products are written by a
separate subprocess and not by the subprocesses creating the output data.

• Only subprocesses directly called by the atmosphere manager are shown in
the diagrams.

• Each subprocess that shows a dotted control line in the diagram is under con-
trol which means that it is only selectively called by the atmosphere manager
based upon the processing scenario selected in an input control file.

• Each subprocess calls a common error routine (GLAS_Error) when an error
condition occurs. Depending on the severity of the error, the processing may
continue or stop, but in any case, all error messages are written to a common
ancillary log file (ANC06).

11.6.1.1 ATM L1B Calculate Calibration Coefficients, Profile Locations, and
DEM Subprocesses

The ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM process
is divided into five subprocesses. Following is a description of each subprocess:

11.6.1.1.1 ATM L1B Calculate Calibration Coefficients (A_cal_cofs)

Reads a file containing the entire granule's worth of 532 nm and 1064 nm backscatter
calibration coefficients output in x minute segments. Depending on options used in
the ancillary atmosphere constants file, 532 nm and 1064 nm calibration coefficients
are calculated for each second of the granule. Options include averaging the segment
coefficients or using lab-measured coefficients instead, since the calculated coeffi-
cients, especially the one at 1064 nm, may be unreliable due to low signal at high alti-
tude.

11.6.1.1.2 ATM L1B Interpolate POD (C_IntrpPOD)

Creates the precision orbit determination (POD) position vector based on time. This
is a common routine used by several processes.

11.6.1.1.3 ATM L1B Calculate Profile Locations (C_CalcSpLoc)

Utilizes the POD position vector to generate the profile location at 1 second. This is a
common routine used by several processes. It also computes the satellite range to
ellipsoid. When the precision attitude determination (PAD) and range are input, it
calculates the attitude angle and topographic elevation.

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-12 March 2006

11.6.1.1.4 ATM L1B Get Geoid (C_GetGeoid)

Utilizes the profile location to generate the geoid height at that location. This is a
common routine used by several processes. The geoid height is used to compute the
satellite range to geoid.

11.6.1.1.5 ATM L1B Calculate DEM (E_CalcDEM)

Utilizes the profile location to generate the Digital Elevation Model (DEM) height at
that location. This is a common routine used by several processes.

11.6.1.2 ATM L1B Backscatter Subprocesses

The ATM L1B Calculate Backscatter Cross Section Profiles process is divided into
four subprocesses. Following is a description of each subprocess

11.6.1.2.1 ATM L1B Interpolate Met Data (A_interp_met)

Interpolates and combines meteorological (met) data and standard atmosphere data
to generate met profiles at 1 second. Standard atmosphere data are used to augment
the met data at higher altitudes and are used for the entire output profile if met data
are unavailable.

Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM
Subprocesses

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-13 Version 5.0

11.6.1.2.2 ATM L1B Calculate Molecular Backscatter Cross Sections
(A_mbscs)

Utilizes met profiles at 1 second to create 532 nm and 1064 nm molecular transmis-
sion profiles and backscatter cross section profiles at 1 second.

11.6.1.2.3 ATM L1B Vertically Align Profiles (A_rebin_lid)

Combines and vertically aligns 532 nm and 1064 nm lidar signals to create lidar pro-
files at 5 Hz and 40 Hz. For 532 nm, the 5 Hz profiles range from 41 to -1 km below
the surface. For 1064 nm, the 5 Hz profiles range from 20 to -1 km below the surface.
In both wavelengths, the 40 Hz profiles range from 10 to -1 km below the surface.

11.6.1.2.4 ATM L1B Calculate Backscatter Cross Section Profiles (A_
bscs)

Calibrates the 532 nm and 1064 nm lidar profiles by the backscatter calibration coeffi-
cients to create the attenuated backscatter cross section profiles at 5 Hz and 40 Hz. If
the 532 nm backscatter signal is saturated, it is an option to replace it with the corre-
sponding 1064 nm backscatter value.

Figure 11-7 ATM L1B Backscatter Subprocesses

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-14 March 2006

11.6.1.3 ATM L1B QA Statistics and WriteATM Subprocesses

The ATM L1B Create QA Statistics and Write ATM process is divided into two sub-
processes. Following is a description of each subprocess

11.6.1.3.1 ATM L1B Create QA Statistics (A_qa_G7)

Creates Level 1B QA statistics for the granule and outputs them to the QAP07 QA
product file.

11.6.1.3.2 ATM L1B Write Atmosphere (WriteAtm)

Writes Level 1B data to the GLA07 data product file.

11.6.1.4 ATM L1B L2 Buffer 20 Seconds Subprocess

The ATM L2 Buffer 20 Seconds process is a single process. Following is a description

Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses

Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-15 Version 5.0

11.6.1.4.1 ATM L2 Buffer 20 seconds (A_buff_data)

Buffers Level 1B data for 20 seconds for input into the Level 2 processing. This is nec-
essary because lidar signals need to be collected for 20 seconds for high altitude aero-
sol detection. Twenty seconds of data are buffered irrespective of time gaps between
data records.

11.6.1.5 ATM L2 Calculate Layer Heights Subprocesses

The ATM L2 Calculate Layer Heights process is divided into three subprocesses. Fol-
lowing is a description of each subprocess:

11.6.1.5.1 ATM L2 Calculate Cloud Layers (A_cld_lays)

Detects cloud layer heights and ground heights at once per 4 seconds, 1 second, 5 Hz,
and 40 Hz. Up to 10 cloud layers may be detected below 20 km, except at the 40 Hz
resolution where up to 1 layer may be detected under 4 km. Layers may only be
detected at the higher resolutions if they were detected at the lower resolutions. A
cloud/aerosol discrimination routine discriminates some of the layers detected at
once per 4 seconds as elevated aerosol layers.

11.6.1.5.2 ATM L2 Calculate PBL Layer (A_pbl_lay)

Detects planetary boundary layer (PBL) heights and ground heights at once per 4 sec-
onds and 5 Hz.

Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-16 March 2006

11.6.1.5.3 ATM L2 Calculate Elevated Aerosol Layers (A_aer_lays)

Detects elevated aerosol layer heights. Up to 3 aerosol layers may be detected above
20 km at once per 20 seconds, while up to 5 aerosol layers may be detected below 20
km at once per 4 seconds. It is an option whether to use this algorithm to detect aero-
sol layers below 20 km or to keep the aerosol layers detected by the cloud detection
algorithm.

11.6.1.6 ATM L2 Calculate Optical Properties

The ATM L2 Calculate Optical Properties process is a single process. Following is a
description:.

11.6.1.6.1 ATM L2 Calculate Aerosol Optical Properties (A_aer_opt_prop)

Creates cloud and aerosol backscatter and extinction cross section profiles, and cloud,
PBL, and aerosol optical depths. Cloud data are created at 1 second while PBL and
elevated aerosol data are created at once per 4 seconds. Optical depths for up to 10
cloud layers are calculated, while up to 8 elevated aerosol optical depths are created.

11.6.1.7 ATM L2 QA Statistics and WriteATM Subprocesses

The ATM L2 Create QA Statistics and Write ATM process is divided into two subpro-
cesses. Following is a description of each subprocess

Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses

ATM L2 Calc Cloud &
Aerosol Optical Props

4.6.1

prof_loc_buf

cld_hts

532_M_bscs_buf
532_bscs_buf

aer_bs

aer_od

met_prof_buf

time_buf

pbl_od

aer_hts

pbl_hts

cld_bs

cld_od

cld_ext

aer_ext

cld_hts

aer_hts

cld_msf

aer_msf

cld_sval

aer_sval

pbl_hts

control

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-17 Version 5.0

11.6.1.7.1 ATM L1B Write Atmosphere (WriteAtm)

Writes Level 2 data to the GLA08-11 data product files. Data products GLA08-11 are
always created together. Aerosol layer heights are written to GLA08, cloud layer
heights are written to GLA09, cloud and aerosol backscatter and extinction profiles
are written to GLA10, and cloud and aerosol optical depths are written to GLA11.

11.6.2 Structure Charts

The following structure charts illustrate the organization of the atmosphere computa-
tions software modules. Modules are called top to bottom and from left to right.
Input variables point downwards to the modules that are receiving them while out-
put variables point upwards from the module which created them. Control is not an
argument, but indicates which modules are only selectively called by the atmosphere
manager for partial reprocessing.

Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-18 March 2006

Figure 11-13 ATM Calibration Coefficient / Profile Location / DEM Modules

Figure 11-14 ATM Backscatter Modules

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-19 Version 5.0

Figure 11-15 ATM L1B QA Statistics / Write ATM Modules

Figure 11-16 ATM 20 sec Buffering Module

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-20 March 2006

Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules

Figure 11-18 ATM Optical Properties Module

GLAS_Atm GSAS Detailed Design Document

March 2006 Page 11-21 Version 5.0

Figure 11-19 L2 QA Statistics / Write ATM Modules

GSAS Detailed Design Document GLAS_Atm

Version 5.0 Page 11-22 March 2006

March 2006 Page 12-1 Version 5.0

Section 12

GLAS_Reader

GLAS_Reader is a utility GSAS PGE.

12.1 Function

GLAS_Reader is a utility GSAS PGE. It reads various GLAS files and creates human-
readable text output files.

12.2 Design Approach

The following design criteria are specific to GLAS_Reader

• GLAS_Reader fully uses the standard routines from the model GSAS PGE.

• Output files are named by adding extensions to the input file name.

• GLAS_Reader provides a rudimentary user interface when executed without a
control file command-line argument.

12.3 Input and Output Files

Table 12-1 lists the potential input files to GLAS_Reader. All or some of these files
may be specified. Note, however, than GLA00 APID files may not be specified with-
out also specifying a corresponding ANC29 file. See the appropriate section of this
document or the GLAS Data Products Specifications Volumes for details regarding
the non-specific files.

Table 12-1 GLAS_Reader Inputs

File Spec Type Source Short Description

anc01*_??.dat Dynamic Ancillary met_util Subsetted meteorological files.
There is a separate ANC01 file
per data type. All of the ANC01
files must be specified.

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_01.dat Static Ancillary Science Team GLAS global constants file.

anc07*_02.dat Static Ancillary Science Team GLAS waveform constants file.

anc07*_03.dat Static Ancillary Science Team GLAS elevation constants file.

anc07*_04.dat Static Ancillary Science Team GLAS atmosphere constants
file.

anc07*_05.dat Static Ancillary Science Team GLAS L1A constants file.

anc08*.dat Dynamic Ancillary UTexas Precision orbit file.

GSAS Detailed Design Document GLAS_Reader

Version 5.0 Page 12-2 March 2006

GLAS_Reader will create an output file for each type of input file requested.
GLAS_Reader will add a ‘.txt’ extension to the name of the file which is processed.
Time selection for the output files is based on the time specified with the input files or
the user interface.

A corresponding ANC29 file is required to process GLA00 APID files. When process-
ing GLA00 APID files, GLAS_Reader writes all output to the ANC29 text file, instead
of to individual APID files. The benefit of this is that the output is created in time-
aligned fashion. Also note that specific APID files may be processed even though the
ANC29 file was created with a superset of the selected APIDs.

12.4 GLAS_Reader

The basic processing algorithm is summarized below:

• Initialize (MainInit)

anc12*_01.dat Static Ancillary Science Team DEM mask file.

anc13*.dat Static Ancillary Science Team Geoid file

anc16*.dat Static Ancillary Science Team Ocean Tide file

anc17*.dat Static Ancillary Science Team Load Tide file

anc18*.dat Static Ancillary Science Team Standard Atmosphere file

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc27*.dat Static Ancillary Science Team Regional mask files.

anc30*.dat Static Ancillary Science Team Aerosol file

anc31*.dat Static Ancillary Science Team Troposphere file

anc32*.dat Dynamic Ancillary GLAS_L0proc Frequency board to GPS time
correlation file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc36*.dat Dynamic Ancillary atm_anc Atmosphere Calibration file.

anc45*.dat Static Ancillary Science Team Metadata input files.

Control File Control ISIPS Operations Control file.

gla00*.dat/
ANC29*.dat

Level-0 APID/
Dynamic Ancillary

EDOS/
GLAS_L0proc

GLAS Level-0 APID files and
the requisite ANC29 index file.

gla*.dat GLAS Product GSAS GLAS Product files.

Gla*.qap GLAS Product QA GSAS GLAS Product Quality Assur-
ance file.

Table 12-1 GLAS_Reader Inputs (Continued)

File Spec Type Source Short Description

GLAS_Reader GSAS Detailed Design Document

March 2006 Page 12-3 Version 5.0

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer)

• Print ancillary files (PrintAnc)

• Print quality Assurance Files (PrintQAP)

• Until all input files are processed...

- Read and write data until all data written (ReadData, PrintData)

• Close all files and generate summaries (MainWrap)

PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

• MainInit

• Cntl_Init

• GetControl

• OpenFiles

• Print_Cntl

• ReadAnc

• Write_LibVer

• Write_eCntl

• PrintAnc

• PrintQAP

• ReadData

• PrintData

• MainWrap

GSAS Detailed Design Document GLAS_Reader

Version 5.0 Page 12-4 March 2006

March 2006 Page 13-1 Version 5.0

Section 13

met_util

13.1 Overview

met_util is a GSAS utility. It does not use the functionality of the GSAS core PGE
model. met_util is a processing shell wrapped around wgrib legacy code.

13.2 Function

Met_util reads a meteorological (MET) file and creates subset files (i.e. temperature,
relative humidity, etc.).

13.3 Design Approach

• met_util sets up input/output files and uses a system call to execute the wgrib
external program.

• met_util does not follow the model GSAS PGE.

• met_util does use facilities of the common libraries.

• met_util does not perform multi-granule processing or allow for time selec-
tion.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

13.4 Input and Output Files

Table 13-1 lists the required inputs to met_util. Table 13-2 lists the outputs created by
met_util. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

13.5 Functions

met_util includes the following functions:

• - M_read_control_mod.f90: Reads the control file and passes the input and
output file names to the program.

• - wgrib: A stand alone 'C' program developed at NCEP to manipulate and
decode GRIB files. This routine is used extensively to extract relevant MET
parameters and create global data files. See http://wesley.wwb.noaa.gov/
wgrib.html for details on wgrib.

GSAS Detailed Design Document met_util

Version 5.0 Page 13-2 March 2006

13.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and
output file names. These names are passed to a script which calls an executable
(wgrib) that creates the subset files

Table 13-1 met_util Inputs

File Spec Type Source Short Description

anc40*.dat Dynamic Ancillary GSFC DAAC Input NCEP Global Analysis
met file. 1 by 1 degree gridded
data set with sampling every 6
hours. Variables included are
temperature, geopotential
height, and relative humidity at
standard upper atmospheric
pressure levels. The MET files
are in the GRIB format, which is
the WMO (World Meteorologi-
cal Organization) standard for
exchanging gridded binary data.

anc07*_06.dat Static Ancillary Science Team Utility error/constants file.

Control File Control ISIPS Operations Control file.

Table 13-2 met_util Outputs

File Spec Type Destination Short Description

anc01*_00.dat Dynamic Ancillary amt_anc
GLAS_Atm
GLAS_Alt

Meteorological header file. Sub-
setted NCEP Global Analysis
file.

anc01*_01.dat Dynamic Ancillary amt_anc
GLAS_Atm
GLAS_Alt

Meteorological precipitable
water file. Subsetted NCEP Glo-
bal Analysis file.

anc01*_02.dat Dynamic Ancillary amt_anc
GLAS_Atm
GLAS_Alt

Meteorological height file. Sub-
setted NCEP Global Analysis
file.

anc01*_03.dat Dynamic Ancillary amt_anc
GLAS_Atm
GLAS_Alt

Meteorological relative humidity
file. Subsetted NCEP Global
Analysis file.

anc01*_04.dat Dynamic Ancillary amt_anc
GLAS_Atm
GLAS_Alt

Meteorological temperature file.
Subsetted NCEP Global Analy-
sis file.

met_util GSAS Detailed Design Document

March 2006 Page 13-3 Version 5.0

Figure 13-1 Process Flow Diagram: Overall Process

GSAS Detailed Design Document met_util

Version 5.0 Page 13-4 March 2006

Figure 13-2 Process Flow Diagram: Shell Script

March 2006 Page 14-1 Version 5.0

Section 14

reforbit_util

14.1 Overview

reforbit_util is a GSAS utility. It does not use the functionality of the GSAS core PGE
model.

14.2 Function

The purpose of the reforbit_util program is to process a given Reference Orbit file for
all ascending equatorial crossings. Each ascending equatorial crossing will be given
a track number. The first track west of Greenwich (or on Greenwich) will be
assigned a Track number of 1 and its time will be determined. All consecutive tracks
after that (in increasing time order) will be assigned numbers 2, 3, 4, and so on. All
tracks that were to the right of Track 1, will be wrapped around the last track on the
left and numbered accordingly.

14.3 Design Approach

• reforbit_util does not follow the model GSAS PGE.

• reforbit_util does use facilities of the common libraries.

• reforbit_util does not perform multi-granule processing or allow for time
selection.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

14.4 Input and Output Files

Table 14-1 lists the required inputs to reforbit_util. Table 14-2 lists the outputs created
by reforbit_util. See the GLAS Data Products Specifications Volumes or GLAS Science
Data Management Plan for details regarding the these files..

14.5 Functions

reforbit_util includes the following functions:

Table 14-1 createGran_util Inputs

File Spec Type Source Short Description

anc26*.dat Dynamic Ancillary UTexas Reference orbit t file.

anc07*_06.dat Static Ancillary Science Team Utility error/constants file.

Control File Control ISIPS Operations Control file.

GSAS Detailed Design Document reforbit_util

Version 5.0 Page 14-2 March 2006

• rd_reforb_cntrl_mod.f90: Reads the control file and passes the input and out-
put file names to the program.

• c_profRefOrbit_mod.f90: Reads the Reference Orbit file and determines the
ascending equatorial crossing longitudes and track numbers.

• c_legacyintrpPOD_mod.f90: Interpolates the reference orbit data to determine
the position vectors for a given time.

• c_calcsploc_mod.f90: Calculates the location (lat, lon) that corresponds to a
given position vector.

14.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and
output file names. It then opens these files and passes their lon numbers to
c_procRefOrbit. The c_procRefOrbit routine will read the reference orbit file one
record at a time and geolocate using c_calcsploc. It will be looking for records that
straddle the equator in the ascending direction. When such records are found, the
exact equatorial crossing location and time is determined. This is done by determin-
ing the location at a time that is midway between the two records that straddle the
equator. If the latitude is within tolerance limits, an ascending equatorial crossing
has been found. If not, the location of the midpoint between the recently located
point and one of the previous points on the other side of the equator is determined,
and checked if it is on the equator. This process is repeated until the exact equator
crossing is determined (within tolerance limits).

The c_procRefOrbit routine will then assign a track number to this equator crossing,
and will continue the above process until all records are read or until it starts reading
repeat tracks. The routine will then search through all the equator crossing longi-
tudes to find the first crossing west of (or on) Greenwich. That track will be
assigned a Track number of 1 and its time will be determined. All consecutive tracks

Table 14-2 createGran_util Outputs

File Spec Type Destination Short Description

anc22*.dat Dynamic Ancillary I-SIPS Track file.The first record con-
tains the average period of the
tracks (in seconds), and the
number of tracks in the refer-
ence orbit file. All subsequent
records contain the longitude (in
degrees E longitude), the track
number, time in seconds relative
to Track 1, the actual MJD time
(in days), and the seconds of
day.

anc43*.dat Dynamic Ancillary SCF SCF track file.

anc28*.dat Dynamic Ancillary ISIPS NOSE track file

reforbit_util GSAS Detailed Design Document

March 2006 Page 14-3 Version 5.0

after that (in increasing time order) will be assigned numbers 2, 3, 4, and so on. All
tracks that were to the right of Track 1, will be wrapped around the last track on the
left and numbered accordingly.

Figure 14-1 Process Flow Diagram

GSAS Detailed Design Document reforbit_util

Version 5.0 Page 14-4 March 2006

March 2006 Page 15-1 Version 5.0

Section 15

createGran_util

15.1 Overview

createGran_util is a GSAS utility. It does not use the functionality of the GSAS core
PGE model.

15.2 Function

The purpose of the createGran_util program is to process a given Predicted Orbit file
for all ascending equatorial crossings, and +/- 50 degree latitude crossings. The +/-
50 degree latitude crossings will be designated by segment numbers. The segment
numbers are defined as follows:

• Segment 1 - start of +50 degree latitude crossing (on the ascending portion of
the track),

• Segment 2 - start of +50 degree latitude crossing (on the descending portion of
the track),

• Segment 3 - start of a -50 degree latitude crossing (on the descending portion
of the track),

• Segment 4 - start of a -50 degree latitude crossing (on the ascending portion of
the track).

15.3 Design Approach

• createGran_util does not follow the model GSAS PGE.

• createGran_util does use facilities of the common libraries.

• createGran_util does not perform multi-granule processing or allow for time
selection.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

15.3.1 Definitions

The reference orbit information will be stored in the Oracle database, and will hence-
forth be referred to as the Reference Orbit table. The Reference Orbit table will con-
tain the following information for each of the Reference Orbits to be used during data
processing:

1) The Repeat groundtrack phase (p):

where,

P=1 for 8-day

GSAS Detailed Design Document createGran_util

Version 5.0 Page 15-2 March 2006

P=2 for 183-day

P=3 for transfer orbit

2) Reference Orbit number (r):

This number will start at 1, and increment each time we receive a new reference
orbit. It will be unique for each set of ground tracks.

3) Instance (k):

The instance will start at 1, and increment by one every time we change from one
reference orbit to another.

4) Cycle (ccc):

The cycle number will restart at 1 every time the instance number, k, changes.
The cycle number will then increment within the instance every time track 1 for
that orbit is reached. It should be noted that most instances will begin in an arbi-
trary track (not 1) because of how we are numbering the tracks.

5) Track (tttt):

Tracks are defined from a reference orbit. Each track begins and ends at the
ascending equator crossing. Tracks will be numbered such that track 1 is the clos-
est track to Greenwich from the west, and then contiguous in time after that. For
transfer orbits, for which we have no predefined reference orbit, track 1 is the first
track for which we have data for that instance, k.

6) Begin Time:

Begin time to use the reference orbit file.

7) End Time:

End time to use the reference orbit file.

8) Begin Track Number:

The first track number that is before the Begin time.

9) Time into Begin Track:

Time into the begin track. This will be difference between the Begin Time of the
reference orbit file and the beginning time of the Begin Track.

10) Number of tracks per cycle:

The number of tracks per cycle for the reference orbit.

11) Begin Rev number:

TBD

12) Track file name:

createGran_util GSAS Detailed Design Document

March 2006 Page 15-3 Version 5.0

The Track file name will be the name of the track file that corresponds to the refer-
ence orbit file. This file will contain all the tracks that are relevant to the reference
orbit file, along with their ascending node longitudes. These tracks will be num-
bered according to the convention mentioned above in 5.

15.3.2 Assumptions

1) A start and end time will be provided by UTCSR for each reference orbit. The
start time will be provided before we get data or a predicted orbit file for that ref-
erence orbit. The end time will be provided at a later date.

2) The reference orbit file will be cataloged in the reference orbit ID table after the
reference orbit tracks are created. The name of the reference orbit track file will
be noted in this table.

3) For transfer orbits we will not receive real reference orbits from UTSCR, and
will need to use the tracks generated from the predicted orbit file. This will be
done by running the reference orbit track program on the predicted orbit file.

4) Each predicted orbit file will be for 48 hours, starting at noon on day n-1, and
going until noon on day n+1, where n is the day for which we want to use the file.
A day starts at 00 hours, and ends at midnight.

5) When a predicted orbit file is received, the reference orbit files pertaining to this
predicted orbit file should already be in the reference orbit ID table.

6) For GLA01, 05, and 06, each granule starts at the beginning of each segment
(for all tracks).

7) For GLA02, and GLA07, each granule starts at segment 1 of odd track numbers.

8) For GLA08 through GLA15, each granule starts at segment 1, when the track
number MODed by 14 equals 1.

9) The start of each new instance, or the start of a new cycle, will automatically
create a new granule.

10) During normal processing, the granule files will start with the first granule
encountered in the predicted orbit file. When there is a new instance, then the
first granule will be the granule preceding the first encountered granule. Its start
time will be the actual start time of the data. The next granule will be the first
encountered granule, with its start time. All subsequent granules will be num-
bered and processed as in the normal case.

11) A predicted orbit file can cover more than one reference orbit.

12) The SCF rev file will always start with rev number 1, and increment for every
rev.

13) The cycle in a transfer orbit will span only one track (as opposed to 119 tracks
in an 8-day orbit file).

GSAS Detailed Design Document createGran_util

Version 5.0 Page 15-4 March 2006

15.4 Input and Output Files

Table 15-1 lists the required inputs to createGran_util. Table 15-2 lists the outputs cre-
ated by createGran_util. See the GLAS Data Products Specifications Volumes or
GLAS Science Data Management Plan for details regarding the these files..

Table 15-1 createGran_util Inputs

File Spec Type Source Short Description

anc26*.dat Dynamic Ancillary UTexas Predicted orbit file

anc42*.dat Dynamic Ancillary ISIPS Reference orbit table

anc07*_01.dat Static Ancillary Science Team Global constants file

anc07*_06.dat Static Ancillary Science Team Utility error/constants file

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion

Control File Control ISIPS Operations Control File

Table 15-2 createGran_util Outputs

File Spec Type Destination Short Description

-none- Dynamic Ancillary I-SIPS Quarter rev file. Contains the
quarter rev start time (in J2000
seconds), repeat ground track
phase, reference orbit number,
instance, product type (1 for
quarter rev granule), cycle num-
ber, track number, and segment
number for all the quarter rev
granules determined from the
predicted orbit file.

-none- Dynamic Ancillary I-SIPS Two rev file. Contains the two
rev start time (in J2000 sec-
onds), repeat ground track
phase, reference orbit number,
instance, product type (2 for two
rev granule), cycle number,
track number, and segment
number for all the two rev gran-
ules determined from the pre-
dicted orbit file..

createGran_util GSAS Detailed Design Document

March 2006 Page 15-5 Version 5.0

15.5 Functions

createGran_util includes the following functions:

• rd_GranCntrl_mod.f90: Reads the control file and passes the input and output
file names to the program.

• createGranule_mod.f90: Reads the Predicted Orbit file and determines the
ascending equatorial crossing longitudes and times, as well as the granule
start times and locations (latitudes and longitudes). The results are output to
the two files indicated in the control file.

• c_legacyintrpPOD_mod.f90: Interpolates the predicted orbit data to determine
the position vectors for a given time.

• c_calcsploc_mod.f90: Calculates the location (lat, lon) that corresponds to a
given position vector.

15.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and
output file names. It will then open two scratch files (a rev file, and a granule file).
The LUN numbers of these files, along with the predicted orbit file, will be passed to
the createGranule routine. This routine will read the predicted orbit file, and calcu-
late the ascending equatorial crossing locations and times (which will be written to
the rev file), and the segment locations and times (which will be written to the gran-
ule file). Once the rev and granule files have been populated, the utility will check
to see what the processing mode has been set to. If it is set to REFORB, then the
update_RefTab routine will be called. This routine will read the reference orbit ID
file, and check to see which of the reference orbits do not have a begin track. It will
then check if that reference orbit is a candidate for update. This will be determined

-none- Dynamic Ancillary I-SIPS Fourteen rev file. Contains the
fourteen rev start time (in J2000
seconds), repeat ground track
phase, reference orbit number,
instance, product type (3 for two
rev granule), cycle number,
track number, and segment
number for all the fourteen rev
granules determined from the
predicted orbit file.

-none- Dynamic Ancillary I-SIPS SCF rev file. Contains the rela-
tive rev numbers, starting from 1
(during each execution), that
were determined from the given
predicted orbit file.

Table 15-2 createGran_util Outputs (Continued)

File Spec Type Destination Short Description

GSAS Detailed Design Document createGran_util

Version 5.0 Page 15-6 March 2006

by the reference orbit begin time and the predicted orbit start and stop time. The
routine will then determine the closest rev to the reference orbit begin time or the pre-
dicted orbit start time (which ever is greater). The track number corresponding to
the closest rev will be determined from the reference orbit track file. The begin track
number will then be determined, as well as the time into the begin track. If it is a
transfer orbit, then the begin track will be set to 1, and the period will be set to the
period of the rev file.

Figure 15-1 Process Flow Diagram

createGran_util GSAS Detailed Design Document

March 2006 Page 15-7 Version 5.0

If the processing mode is set to PREDORB, then the calc_granules routine will be
called. The predicted orbit file will be read, and processing will start from the pre-
dicted orbit start time or the reference orbit begin time (which ever is greater). The
processing will continue until the reference orbit end time (if it is greater that zero), or
the predicted orbit end time (which ever is less). The cycle number will be deter-
mined at the beginning on the basis of the granule start time and the reference orbit
start time. The start track number will also be determined. All subsequent tracks
will be increments of the start track. The 1/4 rev, 2 rev, and 14 rev granules will be
written out to appropriate 1/4 rev, 2 rev, and 14 rev granule files. Using the informa-
tion from the 1/4 rev information file, a SCF rev file will also be created. The first rev
on that file will be rev 1, and its start time will be the start of the actual rev that the 1/
4 rev information file started with. All subsequent revs will be increments of rev 1,
and will ignore any change of reference orbit files during the run.

GSAS Detailed Design Document createGran_util

Version 5.0 Page 15-8 March 2006

March 2006 Page 16-1 Version 5.0

Section 16

atm_anc

16.1 Overview

atm_anc is a GSAS utility. It does not use the functionality of the GSAS core PGE
model.

16.2 Function

Atm_anc reads a GLA02 product file and computes 532 nm and 1064 nm calibration
coefficients for specified-time segments. The coefficients per segment are output to an
ancillary (ANC36) file which is used in the level 1B atmosphere data processing. A
second ancillary file (ANC44) contains the 532 and 1064 data for clouds that were
detected above about 10 km.

16.3 Design Approach

• atm_anc does not follow the model GSAS PGE.

• atm_anc does use facilities of the common libraries.

• atm_anc does not perform multi-granule processing or allow for time selec-
tion.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

16.4 Input and Output Files

Table 16-1 lists the required inputs to atm_anc. Table 16-2 lists the outputs created by
atm_anc. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

Table 16-1 atm_anc Inputs

File Spec Type Source Short Description

gla02*.dat L1A Product GLAS_L1A GLAS L1A Atmosphere product
file.

anc01*_??.dat Dynamic Ancillary met_util Subsetted MET files. There is a
separate MET file per MET data
type. All of the MET files must
be specified.

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_02.dat Static Ancillary Science Team GLAS atmosphere constants
file.

GSAS Detailed Design Document atm_anc

Version 5.0 Page 16-2 March 2006

16.5 Functions

atm_anc includes the following functions:

• A_common_mod.f90: Contains common parameters and structures

• A_read_control_mod.f90: Reads the control file and passes back the input and
output file names to the program

• A_prod_reader_mod.f90: Opens and reads the product file

• A_open_met_mod.f90: Opens and reads the MET and standard atmosphere
files

• A_open_ozone_mod.f90: Opens and reads the ozone file

• A_sum_lidar_mod.f90: Sums and averages lidar data over time segments

• A_seg_cal_cofs_mod.f90: Creates 532 nm and 1064 nm calibration coefficients
for each time segment and writes results to an output file

16.6 Functional Overview of Calibration Modules

This portion is taken from the document, "Calibration Processing ATBD v4.1.doc"
written January, 2001 by Steve Palm of the GLAS lidar science team. The atmosphere
ancillary utility was written to perform the algorithms described in this document.
The A_sum_lidar_mod.f90 subroutine performs the functions of the SAM module
described below and the A_seg_cal_cofs_mod.f90 subroutine performs the functions
of the CALM module.

16.6.1 Segment Averaging Module (SAM)

The segment averaging reads in the output from GLA02 and produces segment aver-
ages of the data at two calibration heights. There is an upper calibration height and a
lower calibration height. The upper calibration height is fixed (or at least specified by
input from the constants file), while the lower calibration height is calculated from

anc18*.dat Static Ancillary Science Team Standard Atmosphere file

anc35*.dat Static Ancillary Science Team Ozone file

Control File Control ISIPS Operations Control file.

Table 16-2 atm_anc Outputs

File Spec Type Destination Short Description

anc36*.dat Dynamic Ancillary atm_util Atmosphere Calibration file.

anc44*.dat Dynamic Ancillary Science Team Atm 1064 Cirrus CAL File

Table 16-1 atm_anc Inputs (Continued)

File Spec Type Source Short Description

atm_anc GSAS Detailed Design Document

March 2006 Page 16-3 Version 5.0

Figure 16-1 Process Flow Diagram

GSAS Detailed Design Document atm_anc

Version 5.0 Page 16-4 March 2006

the minimum average signal between 8 and 15 km. SAM also eliminates profiles that
are cloud contaminated from the segment average (this only applies to the lower cal-
ibration height). The steps (directly from the ATBD) are given below:

1) Construct a 1 Hz continuous profile of P’ from –1 to 41 km for the 532 chan-
nel and from –1 to 20 km for the 1064 channel.

2) Add the background to ‘summing’ variables for each channel

3) Sum the P’532 data from H1 to H2 km and add it to a ‘summing’ variable.
The values of H1 and H2 will be roughly 29 and 31, respectively, but will be
changeable and read in from the constants file. Increment an ‘upper
counter’.

4) Check for clouds from 22 km to 8 km above ground. If clouds were not
found for this second, then do the following (number 5 below):

5) Add the 1 Hz data (each bin) between 8 and 15 km to a ‘summing’ array for
each channel. Increment a ‘lower counter’.

6) If you have been doing this for t minutes, where t is read in from the con-
stants file (default value: t=10), and at least 50 percent of the expected num-
ber of seconds have been summed (based on the ‘upper counter’), then do
the following:

- compute the average 532 signal from H1 to H2 km for the entire ‘t’
minute segment. Call this P2(532) from the sum generated in step 3
above.

- If the ‘lower counter’ exceeds 50 percent of the expected number of sec-
onds, then perform c, d, and e below. Otherwise, set P1(532) and
P1(1064) to invalid and skip c, d and e. This effectively means that
clouds have made calculations impossible at the lower height.

- Compute the average 532 and 1064 profiles between 15 and 8 km from
the summing array produced in steps 4 and 5 above.

- Find the height of the minimum in the 532 average profile between 8
and 15 km call this hmin – this is the lower calibration height

- Compute the average of the data between hmin+D and hmin-D km for
both the 532 and 1064 channels, where D is in km and is read from the
constants file (default = 1km). Call these P1(532) and P1(1064).

- Compute the average background for the segment for each channel call
these B532 and B1064

- Output to a structure: P1(532), P1(1064), P2(532), B532, B1064, hmin, D,
H1, H2 and: the latitude, longitude and time at ‘m’ points along the seg-
ment, where m is a variable read from the constants file, not to exceed
30. A default value for m is 20. These points would be t/m minutes
apart.

atm_anc GSAS Detailed Design Document

March 2006 Page 16-5 Version 5.0

7) 1. If after ‘t’ minutes, less than 50 percent of the expected number of sec-
onds have been summed (based on the ‘upper counter’), then output miss-
ing values (invalid) for P1(532), P1(1064), P2(532), B532, B1064, and the
other output described in 6g above.

8) Zero out summing variables, summing array and counters

9) Process next ‘t’ minute segment in the same manner

16.6.2 CALibration Module (CALM)

The function of CALM is to compute the calibration constant for each of the segments
output by SAM. The following steps summarize the process:

1) Read in the output from the segment averaging utility (run after GLA02
completes). This output contains segment averages (maybe 20-30 per gran-
ule) at the two calibration heights. For each segment average, there is
maybe 10-20 latitude/longitude pairs (these are the m points along the
orbit segment, described in 6g above). NOTE: If the SAM and CALM mod-
ules are combined into one module, obviously this step is skipped.

2) For each segment that has a valid (not invalid) P1(532), P1(1064) or P2(532)
do steps 3-6 below. If all 3 of these are invalid, then there is no need to per-
form steps 3-6, below. In this case, we set the 3 calibration values to invalid
and skip to step 9 below)

3) At each lat/lon point, compute the average attenuated molecular backscat-
ter at the two calibration heights using ATBD equations 3.2.5 and 3.2.11
(here average means a vertical average – nominally 2 km). This requires
access to the MET data at that lat/lon.

4) At each lat/lon point, compute the ozone transmission from the top of the
atmosphere to the calibration height (ATBD, equation 3.2.8).

5) Compute the average attenuated molecular backscatter for the segment at
the two calibration heights and the average ozone transmission for the seg-
ment (average of the values calculated in steps 3 and 4).

6) Compute the calibration constant as the ratio of the segment signal average
to the average attenuated molecular backscatter times the average ozone
transmission (ATBD, equation 3.2.6).

7) Repeat steps 2-6 for each of the 20-30 segment averages. This will yield 20-
30 of the following: C1(532) – the lower 532 calibration constant, C1(1064) –
the 1064 calibration constant and C2(532) – the upper 532 calibration con-
stant.

8) For each segment, write out to a file the following: 1) The start and end time
for the segment, 2) the 3 calibration values (532 upper and lower, and 1064
lower), 3) the standard deviations of the C values (s1(532), s1(1064) and
s2(532)), 4) the three segment signal averages (532 upper and lower, 1064
lower), 5) the segment average attenuated molecular backscatter at the two
calibration heights, 6) the segment average ozone transmission from the top

GSAS Detailed Design Document atm_anc

Version 5.0 Page 16-6 March 2006

of the atmosphere to the calibration height, 7) the center height and thick-
ness of the upper calibration zone, 8) the center height and thickness of the
lower calibration zone, 9) the segment average 532 background (B532).
Note that if calibration points are thrown out during step 8 above, they are
still output to the file, but have the value of ‘invalid’.

March 2006 Page 17-1 Version 5.0

Section 17

GLAS_Meta

17.1 Function

GLAS_Meta is a utility GSAS PGE. It will read product header records and the
ANC45 metadata input files to create inventory-level EOS metadata files.

17.2 Design Approach

The following design criteria are specific to GLAS_Meta

• With the exception of ReadData, GLAS_Meta fully uses the standard routines
from the model GSAS PGE.

• Only the header information is read from the product files.

17.3 Input and Output Files

Table 17-1 lists the required inputs to GLAS_Meta. Table 17-2 lists the outputs created
by GLAS_Meta. See the GLAS Data Products Specifications Volumes or GLAS Sci-
ence Data Management Plan for details regarding the these files..

Table 17-1 GLAS_Meta Inputs

File Spec Type Source Short Description

gla*.dat GLAS Products GSAS GLAS product files.

anc45*.dat Static Ancillary Science Team Product metadata input files.

anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth
Rotation Data File.

anc46*_0004.dat Static Ancillary Science Team Ancillary metadata input file for
ANC09.

anc08*.dat Dynamic Ancillary UTexas Precision Orbit file.

anc46*_0008.dat Static Ancillary Science Team Ancillary metadata input file for
ANC08.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc46*_0009.dat Static Ancillary Science Team Ancillary metadata input file for
ANC09.

anc20*.dat Dynamic Ancillary UTexas Predicted orbit file.

anc46*_0020.dat Static Ancillary Science Team Ancillary metadata input file for
ANC20.

anc22*.dat Dynamic Ancillary ISIPS Track file.

GSAS Detailed Design Document GLAS_Meta

Version 5.0 Page 17-2 March 2006

anc46*_0022.dat Static Ancillary Science Team Ancillary metadata input file for
ANC22.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc46*_0025.dat Static Ancillary Science Team Ancillary metadata input file for
ANC25.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc46*_0033.dat Static Ancillary Science Team Ancillary metadata input file for
ANC33.

anc37*.dat Dynamic Ancillary UTEXAS Spacecraft CG file.

anc46*_0037.dat Static Ancillary Science Team Ancillary metadata input file for
ANC37.

anc39*.dat Dynamic Ancillary UTEXAS GPS file.

anc46*_0039.dat Static Ancillary Science Team Ancillary metadata input file for
ANC39.

anc51*.dat Static Ancillary GSAS Operations SRTM Track files.

anc46*_0051.dat Static Ancillary GSAS Operations Ancillary metadata input file for
ANC51

anc52*.dat Static Ancillary Science Team Saturation Correction Tables

anc46*_0052.dat Static Ancillary Science Team Ancillary metadata input file for
ANC52

anc07*_0001.dat Static Ancillary Science Team GLAS global constants file.

Control File Control ISIPS Operations Control file.

Table 17-2 GLAS_Meta Outputs

File Spec Type Destination Short Description

gla*.met Metadata ECS ECS-compliant metadata inven-
tory files.

anc04*.met Metadata ECS IERS Polar Motion and Earth
Rotation metadata File.

anc08*.met Metadata ECS Precision Orbit metadata file.

anc09*.met Metadata ECS Precision Attitude metadata file.

anc20*.met Metadata ECS Predicted orbit metadata file.

anc22*.met Metadata ECS Track metadata file.

Table 17-1 GLAS_Meta Inputs (Continued)

File Spec Type Source Short Description

GLAS_Meta GSAS Detailed Design Document

March 2006 Page 17-3 Version 5.0

17.4 GLAS_Meta

The basic processing algorithm for GLAS_Meta is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Loop through available Product and Ancillary Types...

- Parse header and control data using appropriate ANC45/46 information to
create inventory-level metadata.

• Close all files and generate summaries (MainWrap)

17.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

anc25*.met Metadata ECS GPS/UTC conversion metadata
file.

anc33*.mett Metadata ECS UTC time conversion metadata
file.

anc37*.met Metadata ECS Spacecraft CG metadata file.

anc39*.met Metadata ECS GPS metadata file.

Anc51*.met Metadata ECS SRTM metadata file.

Anc52*.met Metadata ECS Range saturation metadata file.

anc06*.txt Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

Table 17-2 GLAS_Meta Outputs (Continued)

File Spec Type Destination Short Description

GSAS Detailed Design Document GLAS_Meta

Version 5.0 Page 17-4 March 2006

• Write_LibVer

• ReadANC

• Write_AncVer

• MainWrap

17.4.2 Metadata Processing

The process of creating metadata files first begins with the GSAS library routines.
Based on input file availability, the readGLAxx subroutine reads input product/
ancillary header records and control information and parses the data into common
and local header data structures. The common header data structure is further sub-
setted into a metadata substructure by matching header keywords with keywords
found in the appropriate ANC45/46 file. The header is parsed in a very specific way.
It is important to note that the first keyword found which does not match a keyword
in the ANC45/46 files causes the rest of the header information to be stored in the
common_header data structure (NOT in the metadata substructure). It is critical that
the metadata information within the product headers be contiguous and consistent
with the ANC45/ANC46 files. Inconsistency will prevent the metadata information
from being filled correctly.

After the header information is parsed, WriteMetaFile walks through the ANC45/
ANC46 keywords and finds appropriate values from the header metadata substruc-
ture. It then replaces default values found in the ANC45/ANC46 file with actual val-
ues contained within the product headers. It writes the keywords and values in a
format specific to EOS inventory-level metadata.

17.4.3 ANC45/ANC46 File Updates

The manually created ANC45/ANC46 text files share information contained in the
ECS descriptor files. The descriptor files are created in cooperation with ECS. There
is a descriptor for each product and selected ancillary files. The descriptor files con-
tain a section of comments on implemented changes, followed by collection and core
(inventory) metadata information in ODL (Object Description Language) format.
Changes made to the ECS descriptor files will produce a new MCF file and will be
delivered to the developer from ECS when requested. MCF files contain strictly
inventory/core metadata, and product specific attribute information. MCF files are
in Object Description Language format.

The first section of the ANC45 file contains global metadata parameters, and remains
the same for all products. The second section contains additional attributes. The last
section contains the parameters/GCMD keywords that are specific to a particular
product, and can be traced back to the collection level for a particular product. When
a new MCF file is created by ECS it may have changes that will require the ANC45/
ANC46 file to be changed. Addition or removal of additional attributes, or changes in
the parameters are possible changes that would require an ANC45 change. Changes
to the parameters or additional attributes must be coordinated with ECS, then the
ANC45 can be edited by hand to make the changes. The format of the ANC45 file
must not be altered outside of additional attribute or parameter container changes.

GLAS_Meta GSAS Detailed Design Document

March 2006 Page 17-5 Version 5.0

The EOSDIS ICD Between ECS and SIPS Volume 0 Interface Mechanisms 423-41-57
explains the exchange of MCF files, and .met files between EOSDIS and I-SIPS.

The ANC46 file contains only the global metadata parameters section. Product spe-
cific attributes, and parameters have not been defined for the selected ancillary files
that have descriptors.

Partial Sample of an ANC45 file
#
Global Metadata Parameters
#
ReprocessingPlanned = further update anticipated using enhanced PGE
ReprocessingActual = processed once
LocalGranuleID = NOT SET
ProductionDateTime = NOT SET
LocalVersionID = NO SET
OrbitNumber = NOT SET
EquatorCrossingLong = NOT SET
EquatorCrossingTime = NOT SET
EquatorCrossingDate = NOT SET
ShortName = NOT SET
VersionID = 1
InputPointer = NOT SET
RangeBeginningTime = NOT SET
RangeEndingTime = NOT SET
RangeBeginningDate = NOT SET
RangeEndingDate = NOT SET
PGEVersion = NOT SET
#
Additional Attributes
#
Additional_Attribute = Track
Track = NOT SET
Additional_Attribute = Track_Segment
Track_Segment = NOT SET
Additional_Attribute = ReferenceOrbit
ReferenceOrbit = NOT SET
Additional_Attribute = Instrument_State
Instrument_State = NOT SET
Additional_Attribute = Instrument_State_Date
Instrument_State_Date = NOT SET
Additional_Attribute = Instrument_State_Time
Instrument_State_Time = NOT SET
Additional_Attribute = Cycle
Cycle = NOT SET
Additional_Attribute = Instance
Instance = NOT SET

GSAS Detailed Design Document GLAS_Meta

Version 5.0 Page 17-6 March 2006

#
Parameters - Waveform
#
ParameterName=Waveform
AutomaticQualityFlag = Passed
AutoQualFlagExpl = Passed indicates parameter passed for specific automatic test;
Failed, parameter failed specific automatic test.
OperationalQualityFlag= Inferred Passed
OpQualFlagExpl = Passed,parameter passed the specified operational test. Inferred
Pass,parameter terminated with warnings. Failed parameter terminated with fatal
errors.
ScienceQualityFlag = Inferred Passed
SciQualFlagExpl = Passed,parameter passed the specified science test. Inferred
Pass,parameter terminated with warnings for specified science test. Failed parameter
terminated with fatal errors for specified science test.
QAPercentMissingData = 0
QAPercentOutofBounds = 0

March 2006 Page 18-1 Version 5.0

Section 18

GLAS_Tick

18.1 Function

GLAS_Tick reads ANC09, ANC32 and (optionally) GLA03 input files and creates
ANC50_00 and ANC50_01 output files. The ANC50_00 contains merged ANC09/
ANC32 information which is written at a GPS update event. The ANC50_01 contains
6 hour statistics for oscillator and engineering data.

18.2 Design Approach

The following design criteria are specific to GLAS_Tick.

• GLAS_Tick fully uses the standard routines from the model GSAS PGE.

• GLA03 processing is optional. GLAS_Tick performs GLA03 processing based
on the presence of a GLA03 input file

• There are no execution scenarios for GLAS_Tick (besides that determined by
the presence or absence of GLA03 inputs).

18.3 Input and Output Files

Table 18-1 lists the required inputs to GLAS_Tick. Table 18-2 lists the outputs created
by GLAS_Meta. See the GLAS Data Products Specifications Volumes or GLAS Sci-
ence Data Management Plan for details regarding the these files..

Table 18-1 GLAS_Tick Inputs

File Spec Type Source Short Description

anc07*_00.dat Static Ancillary Science Team Error file.

anc07*_01.dat Static Ancillary Science Team Global constants file.

anc07*_05.dat Static Ancillary Science Team L1A constants file.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc32*.dat Dynamic Ancillary GLAS_L0proc GPS time correlation file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

gla03*.dat
(optional)

L1A Product GLAS_L1A L1A Engineering product file.

Control File Control ISIPS Operations Control file.

GSAS Detailed Design Document GLAS_Tick

Version 5.0 Page 18-2 March 2006

18.4 GLAS_Tick

The basic processing algorithm for GLAS_Meta is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Initialize output Headers

• Initialize Statistics

• Until all data are processed

- Compute Statistics

- Write Tick Data upon GPS Time Update

- Write Engineering Statistics at desired frequency

• Close all files and generate summaries (MainWrap)

18.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

Table 18-2 GLAS_Tick Outputs

File Spec Type Destination Short Description

anc50*_0000.txt Text file ISF/Science Team Merged ANC09/ANC32 file.

anc50*_0001.txt Text file ISF/Science Team Frequency trend file.

anc06*.txt Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

GLAS_Tick GSAS Detailed Design Document

March 2006 Page 18-3 Version 5.0

• Write_AncVer

• MainWrap

18.4.2 Engineering Statistics Processing

Selected statistical Engineering parameters are computed at a 6 hour interval. Statis-
tics reported include minimum, maximum, and mean. Precision problems are
avoided by using offsets to perform computations on the deltas of parameters (as
opposed to using the whole values). Common routines from the math library
(lib_math) are used to ensure consistency.

18.4.3 GPS Update Processing

GPS update information is written only when a GPS update event occurs (nominally
every 10 seconds.) Please reference the “Construction of the Lookup Table of GLAS
Clock Oscillator Frequencies” memo by C. Field, X. Sun, and D. Hancock for algo-
rithm specifications.

GSAS Detailed Design Document GLAS_Tick

Version 5.0 Page 18-4 March 2006

March 2006 Page 19-1 Version 5.0

Section 19

GLAS_APID

GLAS_APID is a utility GSAS PGE. It will read ANC29, ANC32, and/or GLA00
APID files and create tab-delimited text output files of the data. Currently, the only
APID supported is APID19. Future versions of this utility will provide support for
APID12 and APID13.

19.1 Function

GLAS_APID creates tab-delimited text output files for ANC29, ANC32 and APID19.
The APID19 data are split among multiple files, the data being separated by sub-
packet type.

19.2 Design Approach

The following design criteria are specific to GLAS_APID

• With the exception of ReadData, GLAS_APID fully uses the standard routines
from the model GSAS PGE.

• Output files are named by adding extensions to the input file name.

• Multiple-input files (of differing types) is supported. Multiple-granule input is
not supported since APID19 output granules must be multiple-granule.

• All products are output at one record per 1 sec. Only the first of the 40/second
shot times is output in APID19.

19.3 Input and Output Files

Table 19-1 lists the required inputs to GLAS_APID. Table 19-2 lists the outputs cre-
ated by GLAS_APID. See the GLAS Data Products Specifications Volumes or GLAS
Science Data Management Plan for details regarding the these files. Those files which
are only required by specific subsystems are noted within the table..

Table 19-1 GLAS_APID Inputs

File Spec Type Source Short Description

gla00*_19.dat Level-0 APID19 EDOS GLAS Level-0 APID19 files.

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_01.dat Static Ancillary Science Team GLAS global constants file.

anc29*.dat Dynamic Ancillary GLAS_L1A Index file correlating APID
times.

GSAS Detailed Design Document GLAS_APID

Version 5.0 Page 19-2 March 2006

19.4 GLAS_APID

The basic processing algorithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

anc32*.dat Dynamic Ancillary GLAS_L1A GPS time correction file used for
precision timing of GLAS data.

Control File Control ISIPS Operations Control file.

Table 19-2 GLAS_APID Outputs

File Spec Type Destination Short Description

gla00*_19.dat.time.
txt

Tab-delimited text. User Time-related APID19 parame-
ters.

gla00*_19.dat.ac.tx
t

Tab-delimited text. User Altimeter-digitizer-related
APID19 parameters.

gla00*_19.dat.pc.tx
t

Tab-delimited text. User Photon-counter-related APID19
parameters.

gla00*_19.dat.cd.tx
t

Tab-delimited text. User Cloud digitizer-related APID19
parameters.

gla00*_19.dat.time.
txt

Tab-delimited text. User Time-related APID19 parame-
ters.

gla00*_19.dat.gps.t
xt

Tab-delimited text. User GPS-related APID19 parame-
ters.

gla00*_19.dat.ct.txt Tab-delimited text. User C&T-related APID19 parame-
ters.

anc29*.dat.txt Tab-delimited text. Users Index file parameters.

anc32*.dat.txt Tab-delimited text. Users GPS time correction parame-
ters.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

Table 19-1 GLAS_APID Inputs (Continued)

File Spec Type Source Short Description

GLAS_APID GSAS Detailed Design Document

March 2006 Page 19-3 Version 5.0

• Write requested ANC29 data

• Write requested ANC32 data

• Loop through available APID Types...

- If APID is input, ProcessAPID

• Close all files and generate summaries (MainWrap

19.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• MainWrap

GSAS Detailed Design Document GLAS_APID

Version 5.0 Page 19-4 March 2006

March 2006 Page 20-1 Version 5.0

Section 20

Maker

20.1 Overview

Maker is a GSAS utility, but it does not use the functionality of the GSAS core PGE
model.

20.2 Function

The Shuttle Radar Topography Mission (SRTM) was flown in February 2000. Interfer-
ometric Synthetic Aperture Radar data collected on that mission was used to produce
a high resolution DEM of world land areas visible during the mission. This data
was processed by the NASA Jet Propulsion Laboratory (JPL) into a product consist-
ing of a set of 1-degree square cells of elevations suitable for distribution and
research. Cell granularity is 1200 increments per coordinate degree of latitude and
longitude, with some degradation at the extreme latitude limits. Data is available
between 60°N and 56°S latitudes.

The purpose of the Maker program is to access and assimilate this data and to gener-
ate a set of pre-sorted, ICESat specific Track Files of SRTM DEM data which follow
the fixed ICESat orbital tracks. The ultimate goal is to use to Maker's output Track
Files quickly and efficiently to attach high resolution SRTM DEM data to GSAS Prod-
uct Files.

20.3 Design Approach

Maker is a stand-alone utility that does not follow any of the GSAS prescriptions,
libraries, or processing techniques discussed in previous chapters. It is essentially a
single use utility, though it may be necessary to regenerate the track files if any initial
conditions such as the fixed orbits are changed or the SRTM raw data has an update.
Multiple files or a single track can be processed. Track Files produced by Maker have
a complex series of four levels of self-referencing headers that can be used by soft-
ware that reads the files to point directly to a desired elevation value if given an input
location.

20.4 Input and Output Files

Table 20-1 lists the required input files for Maker. Appendix A of the “Interface Con-
trol Document Between ISIPS/ISF and CSR” can provide a description of the refer-
ence orbit file. Table 20-2 lists the output files created by Maker.

20.5 Functions

All functions utilized by Maker are contained within the source code. No additional
library routines non-specific to FORTRAN are required.

GSAS Detailed Design Document Maker

Version 5.0 Page 20-2 March 2006

Table 20-1 Maker Input Files

File Spec Type Source
Short

Description

“Control_Params” text user NAMELIST for-
mat text file of
parameters gov-
erning program
execution.

“cell_names.txt” text user Comprehensive
list of available
cell files, derived
from directory
listing of files

Orbit File Direct access GSAS Operations SCF ICESat Ref-
erence Orbit file

Cell Files Direct access USGS Set of direct
access binary
files of DEM ele-
vations arranged
in 1˚ x 1˚ cell
according to lati-
tude and longi-
tude

Table 20-2 Maker Output Files

File Spec Type Destination
Short

Description

“Pointings.txt” text Transient compu-
tational file

List of pointings
along the path of
the reference
orbit being pro-
cessed at the
incremental gran-
ularity of the cell
files in latitude.

“Swath.txt” text Transient compu-
tational file

List of pointings
along the refer-
ence orbit path
for a given lati-
tude and within a
longitudinal limit
of the central
point. DEM val-
ues are attached.

Maker GSAS Detailed Design Document

March 2006 Page 20-3 Version 5.0

20.6 Functional Overview

Processing for the Maker program is strictly linear. Each step makes use of the pre-
ceding event, whether it be successful opening of a file, reading of a file, or creation of
a file. A failure at any step terminates processing with an error message. The program
performs the following primary algorithmic steps to build a track file:

• Get control parameters from namelist file.

• Read reference orbit to obtain values of latitude and longitude from specified
orbit track.

• Identify a maximum list of SRTM cells crossed by track swath, utilizing the
east/west bounds for any given time point, and based solely on possible track
locations.

• Compare the maximum list with the directory of available cells, and flag those
that can be used.

• Create the sequential pointings file for every potential central pointing. This
set of pointings is continuous along the orbit, with no skips other than those
for values deemed to be outside the useful range (e.g. high latitude).

• Rewind the pointings file, for use as an input.

• Create a sequential swath file containing an entry for every pointing. Use the
saved coordinate data to compute each SRTM file name and internal location,
and to then access the elevations along a swath line and attach them to the
pointing data in the new swath file.

• Rewind the swath file, for use as input.

• Allocate a direct access file for the output track file.

• Cycle through the swath file to accumulate statistics needed in the Level One
and Level Two headers.

“Tracknnnn.DAT” Direct access Track Files Internally indexed
file with multiple
layers of headers
containing DEM
data.

“P_ref_orb.txt” Text Diagnostic Text listing of ref-
erence orbit file.

Screen display Text Status and Diag-
nostics

Text listing of pro-
gram progress.

Table 20-2 Maker Output Files (Continued)

File Spec Type Destination
Short

Description

GSAS Detailed Design Document Maker

Version 5.0 Page 20-4 March 2006

• Create basic header data in the track file, and insert times in Level Three head-
ers as placeholders instead of record numbers.

• Rewind the swath file, for use as input.

• Cycle through the swath file data a second time, accumulate the records of ele-
vations at the end of the existing track file, and insert locations for that data
into existing header records.

March 2006 Page A-1 Version 5.0

Appendix A

Processing Scenarios

All identified scenarios that will be eventually tested.

Table A-1 Reprocessing Scenarios

Scenario Primary Inputs Output Dependencies Processes

End to end Lidar Level 0, ANC data (POD,
Met, Cal file), Cntrl

GLA02, 7-
11, Meta-
data

L1A Atm ATBD,
L1B Atm ATBD,
L2 Atm ATBD,
POD interp, Met
interp

End to end Altime-
ter

Level 0, POD, PAD, Met,
Cal file, Cntrl

GLA05,6,12
-15, Meta-
data

L1A Altimeter
ATBD, L1B
Waveform ATBD,
L1B Elevation, L2
Elevation, POD,
PAD, Geoloc

Level 1A Altimeter Level 0, Cal file, Cntrl GLA01,
Metadata

L1A Altimeter
ATBD

Level 1B Waveform GLA01, POD, PAD, Cal
file, ANC 19,
surf_type_grid, Cntrl

GLA05,Met
adata

L1B Waveform
ATBD, POD, PAD,
Geoloc, surf_type
interp

Level 1B Elevation GLA05, GLA09&11 (if
avail), tide coeff, geoid,
ANC 12, DEM, Met

GLA06,
Metadata

GLA09 and 11
from GLAS_Atm

Geoid, Tides,
Geoloc, Met,
DEM interp, Instr
Range Cor (5)
Reflectance, Atm
Flag

Level 2 Elevation GLA05, GLA06, 4
Masks

GLA12-15,
Metadata

Geoloc, Instr Cor
Range Region-
Specific Parame-
ter Calculations

Waveform Algo-
rithm changes
(standard, ice
sheet, sea ice,
ocean, land)

GLA01, GLA05, Cal file GLA05,
Metadata

GLA06, GLA12-
15 (1 or all)

Specific Wave-
form algorithm
process, Geolo-
cation

Replace POD and/
or PAD on GLA05

GLA05, POD and/or
POD

GLA05,
Metadata

POD and/or PAD,
Geolocation

Replace PAD and/
or POD on GLA06

GLA06, PAD and/or
POD

GLA06,
Metadata

GLA12-15 PAD and/or POD,
Geolocation

GSAS Detailed Design Document Processing Scenarios

Version 5.0 Page A-2 March 2006

Met changes, redo
Met Cor

GLA06, GLA12-15, Met
file

GLA06,
GLA12-15,
Metadata

Met Interpola-
tion, Geolocation

Tides Change,
redo tide cor

GLA06, GLA12-15, tide
coeff

GLA06,
GLA12-15,
Metadata

Tide algorithms,
Geolocation

Geoid changes GLA06, GlA12-15,
Geoid

GLA06,
GLA12-15,
Metadata

Geoid

Standard Instr Cor
Changes

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Standard Instr
Cor Algorithm,
Geolocation

Region Spec Instr
Cor Changes

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Region Specific
Instr Cor Algo-
rithm

Reflectance Algo-
rithm changes

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Reflectance
ATBD

Change GLA06
based on WF Algo-
rithm changing for
GLA05

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Range Instr Cor
Calculation,
Geolocation

Replace PAD and/
or POD on GLA12-
15

GLA12-15, PAD and/or
POD

GLA12-15,
Metadata

POD and or PAD,
Geolocation

Creation of GLA07
BackScatter Pro-
files

GLA02, Met, POD, 400
sec avg file

GLA07,
Metadata

Interp POD,
Interp Met, Molec
BackScat Pro-
files, Calib Coeff,
1064 BackScat
Profiles, 532
BackScat Profiles

Creation of GLA08
Aerosol Layers

GLA07, Constants,
GLA09

GLA08 1 and 4 sec
BackScat aver-
ages, PBL/Aero-
sol <20 km
layers, 20-40 km
aerosol layers

Table A-1 Reprocessing Scenarios (Continued)

Scenario Primary Inputs Output Dependencies Processes

Processing Scenarios GSAS Detailed Design Document

March 2006 Page A-3 Version 5.0

Creation of GLA09
Cloud Layers

GLA07, Constants GLA09 1 and 4 sec
BackScat aver-
ages, Cloud Lay-
ers

Creation of GLA10
Cross Section Pro-
files and Creation
of GLA11 Optical
Depths

GLA07, GLA08, GLA09,
Constants

GLA10,
GLA11

Cloud Optical
Properties, Aero-
sol Optical Prop-
erties, 1 and 4
sec BackScat
averages

Table A-1 Reprocessing Scenarios (Continued)

Scenario Primary Inputs Output Dependencies Processes

GSAS Detailed Design Document Processing Scenarios

Version 5.0 Page A-4 March 2006

March 2006 Page B-1 Version 5.0

Appendix B

Makefiles and Libraries

Developers are “strongly” encouraged to use standard GSAS libraries and makefiles.
GSAS libraries leverage existing code to speed development and ease maintenance.
Makefiles ensure common compiler flags and allow developers to deliver their soft-
ware as part of a general GSAS delivery.

B.1 Compilation

Note: This documentation is specific to the GLAS development environment. It assumes that
the core directory of the GLAS software is located at “/glas/vob”.

B.1.1 To compile the whole distribution

cd /glas/vob/src
make

B.1.2 To compile only the libraries

cd /glas/vob/src
make libs

B.1.3 To recompile a library in debug mode

cd /glas/vob/src/library_directory
make debug

B.1.4 To recompile a library in optimized mode

cd /glas/vob/src/library_directory
make fast

B.1.5 To compile a specific executable

(requires that the libraries are compiled beforehand)

cd /glas/vob/src/executable_directory
make

B.1.6 To compile a specific executable in debug mode

(requires that the libraries are compiled beforehand)

cd /glas/vob/src/executable_directory
make debug

B.1.7 To compile a specific executable in optimized mode

(requires that the libraries are compiled beforehand)

cd /glas/vob/src/executable_directory
make fast

GSAS Detailed Design Document Makefiles and Libraries

Version 5.0 Page B-2 March 2006

B.2 Using Libraries

This section details the use of libraries, both at development and run time stages.

B.2.1 Development

To use a library, you need to include the path and the library name in your Makefile.
The following example shows how to use the platform_lib (which is stored in the /
glas/vob/src/lib directory) to compile a test program:

f90 test.f90 -L/glas/vob/src/lib -lplatform -otest

The next example show how to use the file and anc libraries as well. (A side note: By
unix convention the full filenames are libplatform.sl, libfile.sl, and libanc.sl, however
when they are specified with the -l argument on the compile line, the “lib” and “.sl”
parts are dropped).

f90 test.f90 -L/glas/vob/src/lib -lplatform -lanc -lfile –otest

ORDER IS IMPORTANT. See Foundation Libraries section of this document to verify
that the libraries are specified in the correct order on the compile line.

B.2.2 Runtime

GSAS libraries are dynamically-linked shared libraries. What this means is that the
libraries are not statically linked with executables, but dynamically linked on
demand at runtime. With this in mind, it is important that the executable be able to
determine the location of the libraries at runtime. During compilation, the location of
the libraries is stored in the executable code. If the executable is moved, and the loca-
tion is relative, the libraries will not be found upon execution. In this case, a devel-
oper should use the following procedure to allow executables to link to dynamic
libraries, no matter their location.

chatr +s enable <executable_name>
setenv SHLIB_PATH <pathname to libraries>

This procedure tells the executable to use the SHLIB_PATH environmental variable
to find its libraries, then sets that variable to the path of the shared libraries.

The other way of handling this is to link the libraries into the current directory. The
executable is set to look in the current directories first for its libraries.

B.3 Some Development Hints

• If you want to use the GLAS libraries, simply compile them (as above) and
include the appropriate lines in your makefile (again, as above).

• As long as you model the Makefile for your executable after that of the GLAS
PGEs, you will be using shared libraries and will not need to recompile your
executable after recompiling a library - unless global data structures or sub-
routine arguments are changed.

Makefiles and Libraries GSAS Detailed Design Document

March 2006 Page B-3 Version 5.0

• If you would like to debug the routines in a specific library, cd to that directory
and do a make clean; make debug. Next time you run your executable (you
don’t have to recompile it), it will run with the debug version of the library.

• Using the –g and +check=all flags (included with make debug) is a good idea
during testing.

• If you want to get fancy and create a custom makefile for a special purpose,
simply use another name for the makefile and use make –f mymakefile.

• You may add custom options to the standard makefiles by putting the options
on the gF90_AUX_FLAGS line. For example, if you wish to define a custom
flag (DEBUG_TIME) for debugging purposes, define it as follows:

gF90_AUX_FLAGS= -DDEBUG_TIME

B.4 Makefile Details

This is an attempt to explain how GLAS makefiles work. This assumes the reader is
somewhat familiar with the GLAS VOB layout.

B.5 Types of Makefiles

There are different types of makefiles. This section identifies each.

B.5.1 The Main Makefile

This makefile is located at /glas/vob/Makefile. This makefile builds all GSAS soft-
ware and installs the binaries and libs in the /glas/vob/bin and /glas/vob/lib direc-
tories. This makefile is primarily used during production, not development.
Developers should always use/link to the binaries and libraries within the src direc-
tory, not those in the /bin and /lib directories since the top-level makefile is the only
one which populates such directories.

B.5.2 The src Makefile

This makefile is located at /glas/vob/src/Makefile. It is the main development
makefile which will recursively build all GSAS deliverable software. There are
options to:

• build all deliverable GLAS Libraries (make libs)

• build all deliverable GLAS binaries (make progs)

• build all deliverable Libraries and binaries (make all) -the default

• build all deliverable Libraries and binaries in debug mode (make debug)

• build all deliverable Libraries and binaries in optimization mode (make fast)

• clean up all object code and module files (make clean)

B.5.3 Library Makefiles

These makefiles are located at src/common_libs/*/Makefile. There are options to:

GSAS Detailed Design Document Makefiles and Libraries

Version 5.0 Page B-4 March 2006

• Compile library source and install library (make)

• Compile library source in debug mode and install library (make debug)

• Compile library source in optimization mode and install library (make fast)

The libraries are derived objects and installed into /glas/vob/src/lib

B.5.4 Subsystem Makefiles

These makefiles are located at /glas/vob/src/*_lib/Makefile (where * = l1a, atm,
elev, wf)

• Compile library source and install library (make)

• Compile library source in debug mode and install library (make debug)

• Compile library source in optimization mode and install library (make fast)

The libraries are derived objects and installed into /glas/vob/src/lib. When
installed, the libraries are stored in /glas/vob/lib.

B.5.5 Exec makefiles

These makefiles are located in the directory of each delivered executable: src/
GLAS_L1A/Makefile, src/GLAS_L0proc/Makefile, etc. There are options to:

• Compile binary source (make)

• Compile binary source in debug mode (make debug)

• Compile binary source in optimization mode (make fast)

The executables are derived objects and installed into /glas/vob/bin.

B.6 A Sample Heavily-Commented Makefile
NAME: Makefile
#
FUNCTION: Makefile for GLAS_Exec
#
FILES ACCESSED: See TARGETS definition.
ALL DIRECTORY SPECIFICATIONS SHOULD BE RELATIVE, NOT ABSOLUTE, PATHS!!
#
COMMENTS: None.
#
HISTORY:
#
1998 December 18, JLee, Initial Version
1999 January 14, JLee, Ported to HP
1999 October 18, JLee Removed default DEBUG, removed recursion
1999 October 24, JLee Set the bit to do SHLIB_PATH
#
#----- Set filepaths
#
PATHLVL is the path you use to get to /glas/vob/src, but it should
be a relative path so that we can compile outside the VOB.
#
PATHLVL=..

Makefiles and Libraries GSAS Detailed Design Document

March 2006 Page B-5 Version 5.0

#
UTILDIR is where the GLAS makefile includes can be found. These files
contain settings specific to GLAS Makefiles.
/glas/vob/cc_util is the actual path.
#
UTILDIR=$(PATHLVL)/../cc_util
#
Include Standard GLAS Definitions
#
include $(UTILDIR)/make_defs.$(BRAND)
include $(UTILDIR)/make_defs.incl
#
Define libraries we will need. They are located in /glas/vob/src/lib.
This path is pre-defined (relatively) in the GLAS include files.
The actual filename for –lwf is libwf.sl, -file is libfile.sl

LIBS= -ll1a -latm -lwf -lelev -lprod -lfile -ltime -lanc -lcntrl \
-lerr –lplatform
#
Define the Production directory where we will copy the binary upon
creating a production build
#
PRODDIR=$(PATHLVL/../bin)
#
Define the target binary
#
TARGET=GLAS_Exec
#
Define the objects will are needed by the Target
#
OBJECTS= \

CntlDefs_mod.o fCntl_mod.o eCntl_mod.o \
MainInit_mod.o ReadData_mod.o GetControl_mod.o \
CloseFiles_mod.o OpenFiles_mod.o WriteL1A_mod.o WriteWF_mod.o \
WriteAtm_mod.o WriteElev_mod.o MainWrap_mod.o \
ReadAnc_mod.o L1AMgr_mod.o ElevMgr_mod.o WFMgr_mod.o AtmMgr_mod.o \
vers_exec_mod.o GLAS_Exec.o

#
Custom Rules
#
gF90_AUX_FLAGS=
#
Make our Target by default
#
all: $(TARGET)
#
TARGET, LIBS and OBJECTS are defined in this makefile.
LINK_EXE.f90 and FFLAGS are defined in the GLAS includes.
chart +s enable allows the executable to use the SHLIB_PATH to
look for its shared libraries.
#
$(TARGET): $(OBJECTS) Makefile

 $(LINK_EXE.f90) $(FFLAGS) -o $(TARGET) $(OBJECTS) $(LIBS); \
chatr +s enable $(TARGET)

#
Include Standard GLAS Dependencies
#
include $(UTILDIR)/make_depends.incl

GSAS Detailed Design Document Makefiles and Libraries

Version 5.0 Page B-6 March 2006

#
End of MakeFile
#

March 2006 Page AB-1 Version 5.0

Abbreviations & Acronyms

A2P Algorithm-to-Product Conversion

ALT Altimeter or Altimetry, also designation for the EOS-Altimeter spacecraft series

ANCxx GLAS Ancillary Data Files

APID GLAS Level-0 Data file

ATBD Algorithm Theoretical Basis Document

ATM Atmosphere

CCB Change Control Board

ClearCase GSAS version tracking software

CR Change Request

DAAC Distributed Active Archive Center

DEM Digital Elevation Model

DFD Data Flow Diagram

DLT Digital Linear Tape

EDOS EOS Data and Operations System

EDS Expedited Data Set

ELEV Elevation

EOC EOS Operating Center

EOS NASA Earth Observing System Mission Program

EOSDIS Earth Observing System Data and Information System

GB Gigabyte

GDS GLAS Ground Data System

GLAS Geoscience Laser Altimeter System instrument or investigation

GLAxx GLAS Science Data Product Files

GLOP GLAS Level-0 PGE (correctly called GLAS_L0proc)

GPS Global Positioning System

GSAS GLAS Science Algorithm Software

GSFC NASA Goddard Space Flight Center at Greenbelt, Maryland

GSFC/WFF NASA Goddard Space Flight Center/Wallops Flight Facility at Wallops Island,
Virginia

GSAS Detailed Design Document Abbreviations & Acronyms

Version 5.0 Page AB-2 March 2006

HDF Hierarchal Data Format

HDF-EOS EOS-specific Hierarcial Data Format

I-SIPS Icesat Science Investigator Led Processing System

I/O Input/Output

ICESAT Ice, Cloud and Land Elevation Satellite

ID Identification

ID Identification

IEEE Institute for Electronics and Electrical Engineering

ISF Instrument Support Facility

IST Instrument Star Tracker

KB Kilobyte

JPL Jet Propulsion Laboratory

L0 Level 0

L1A Level-1A

L1B Level-1 B

L2 Level-2

LASER Light Amplification by Stimulated Emission of Radiation

LASER Light Amplification by Stimulated Emission of Radiation

LIDAR Light Detection and Ranging

LIDAR Light Detection and Ranging

LPA Laser Pointing Array

LRS Laser Reference System

MB Megabyte

MET (context sensitive) Mission Elapsed Time or Meteorological

N/A or NA Not (/) Applicable

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

NOSE Nominal Orbital Spatial Extent

P2A Product-to-Algorithm Conversion

PAD Precision Attitude Determination

PDF Portable Document Format

PDS Production Data Set

Abbreviations & Acronyms GSAS Detailed Design Document

March 2006 Page AB-3 Version 5.0

PGE Product Generation Executable

POD Precision Orbit Determination

POD Precision Orbit Determination

PR Problem Report

QA Quality Assessment

QAP Quality Assessment Processing

SC Structure Chart

SCF Science Computing Facility

SDMP Science Data Management Plan

SDMS Scheduling and Data Management System

SDP Standard Data Products

SRS Stellar Reference System

SRTM Shuttle Radar Topography Mission

SSMP Science Software Management Plan

SSRF Science Software Requirements Document

TBD to be determined, to be done, or to be developed

UNIX the operating system jointly developed by the AT&T Bell Laboratories and the
University of California-Berkeley System Division

UTC Universal Time Correlation

WF Waveform

GSAS Detailed Design Document Abbreviations & Acronyms

Version 5.0 Page AB-4 March 2006

March 2006 Page GL-1 Version 5.0

Glossary

aggregate A collection, assemblage, or grouping of distinct data parts together to make a
whole. It is generally used to indicate the grouping of GLAS data items,
arrays, elements, and EOS parameters into a data record. For example, the
collection of Level 1B EOS Data Parameters gathered to form a one-second
Level 1B data record. It could be used to represent groupings of various GLAS
data entities such as data items aggregated as an array, data items and arrays
aggregated into a GLAS Data Element, GLAS Data Elements aggregated as
an EOS Data Parameter, or EOS Data Parameters aggregated into a Data
Product record.

array An ordered arrangement of homogenous data items that may either be syn-
chronous or asynchronous. An array of data items usually implies the ability to
access individual data items or members of the array by an index. An array of
GLAS data items might represent the three coordinates of a georeference
location, a collection of values at a rate, or a collection of values describing an
altimeter waveform.

file A collection of data stored as records and terminated by a physical or logical
end-of-file (EOF) marker. The term usually applies to the collection within a
storage device or storage media such as a disk file or a tape file. Loosely
employed it is used to indicate a collection of GLAS data records without a
standard label. For the Level 1A Data Product, the file would constitute the
collection of one-second Level 1A data records generated in the SDPS work-
ing storage for a single pass.

header A text and/or binary label or information record, record set, or block, prefacing
a data record, record set, or a file. A header usually contains identifying or
descriptive information, and may sometimes be embedded within a record
rather than attached as a prefix.

item Specifically, a data item. A discrete, non-decomposable unit of data, usually a
single word or value in a data record, or a single value from a data array. The
representation of a single GLAS data value within a data array or a GLAS Data
Element.

label The text and/or binary information records, record set, block, header, or head-
ers prefacing a data file or linked to a data file sufficient to form a labeled data
product. A standard label may imply a standard data product. A label may
consist of a single header as well as multiple headers and markers depending
on the defining authority.

Level 0 The level designation applied to an EOS data product that consists of raw
instrument data, recorded at the original resolution, in time order, with any
duplicate or redundant data packets removed.

Level 1A The level designation applied to an EOS data product that consists of recon-
structed, unprocessed Level 0 instrument data, recorded at the full resolution
with time referenced data records, in time order. The data are annotated with
ancillary information including radiometric and geometric calibration coeffi-
cients, and georeferencing parameter data (i.e., ephemeris data). The
included, computed coefficients and parameter data have not however been
applied to correct the Level 0 instrument data contents.

GSAS Detailed Design Document Glossary

Version 5.0 Page GL-2 March 2006

Level 1B The level designation applied to an EOS data product that consists of Level 1A
data that have been radiometrically corrected, processed from raw data into
sensor data units, and have been geolocated according to applied georefer-
encing data.

Level 2 The level designation applied to an EOS data product that consists of derived
geophysical data values, recorded at the same resolution, time order, and geo-
reference location as the Level 1A or Level 1B data.

Level 3 The level designation applied to an EOS data product that consists of geo-
physical data values derived from Level 1 or Level 2 data, recorded at a tem-
porally or spatially resampled resolution.

Level 4 The level designation applied to an EOS data product that consists of data
from modeled output or resultant analysis of lower level data that are not
directly derived by the GLAS instrument and supplemental sensors.

metadata The textual information supplied as supplemental, descriptive information to a
data product. It may consist of fixed or variable length records of ASCII data
describing files, records, parameters, elements, items, formats, etc., that may
serve as catalog, data base, keyword/value, header, or label data. This data
may be parsable and searchable by some tool or utility program.

orbit The passage of time and spacecraft travel signifying a complete journey
around a celestial or terrestrial body. For GLAS and the EOS ALT-L spacecraft
each orbit starts at the time when the spacecraft is on the equator traveling
toward the North Pole, continues through the equator crossing as the space-
craft ground track moves toward the South Pole, and terminates when the
spacecraft has reached the equator moving northward from the South Polar
region.

model A graphical representation of a system.

module A collection of program statements with four basic attributes: input and output,
function, mechanics and internal data.

parameter Specifically, an EOS Data Parameter. This is a defining, controlling, or con-
straining data unit associated with a EOS science community approved algo-
rithm. It is identified by an EOS Parameter Number and Parameter Name. An
EOS Data Parameter within the GLAS Data Product is composed of one or
more GLAS Data Elements

pass A sub-segment of an orbit, it may consist of the ascending or descending por-
tion of an orbit (e.g., a descending pass would consist of the ground track seg-
ment beginning with the northernmost point of travel through the following
southernmost point of travel), or the segment above or below the equator; for
GLAS the pass is identified as either the northern or southern hemisphere por-
tion of the ground track on any orbit

PDL Program Design Language (Pseudocode). A language tool used for module
programming and specification. It is at a higher level than any existing com-
pilable language.

process An activity on a dataflow diagram that transforms input data flow(s) into output
data flow(s).

Glossary GSAS Detailed Design Document

March 2006 Page GL-3 Version 5.0

product Specifically, the Data Product or the EOS Data Product. This is implicitly the
labeled data product or the data product as produced by software on the
SDPS or SCF. A GLAS data product refers to the data file or record collection
either prefaced with a product label or standard formatted data label or linked
to a product label or standard formatted data label file. Loosely used, it may
indicate a single pass file aggregation, or the entire set of product files con-
tained in a data repository.

program The smallest set of computer instructions that can be executed as a stand-
alone unit

record A specific organization or aggregate of data items. It represents the collection
of EOS Data Parameters within a given time interval, such as a one-second
data record. It is the first level decomposition of a product file.

Scenario A single execution path for a process.

Standard Data
Product

Specifically, a GLAS Standard Data Product. It represents an EOS ALT-L/
GLAS Data Product produced on the EOSDIS SDPS for GLAS data product
generation or within the GLAS Science Computing Facility using EOS science
community approved algorithms. It is routinely produced and is intended to be
archived in the EOSDIS data repository for EOS user community-wide access
and retrieval.

State Transition
Diagram

Graphical representation of one or more scenarios.

Stub (alias dummy module) a primitive implementation of a subordinate module,
which is normally used in the top-down testing of superordinate (higher) mod-
ules.

Structure Chart A graphical tool for depicting the partitioning of a system into modules, the
hierarchy and organization of those modules, and the communication inter-
faces between the modules.

Structured Design The development of a blueprint of a computer system solution to a problem,
having the same components and interrelationships amount the components
as the original problem has.

Subroutine A program that is called by another program

variable Usually a reference in a computer program to a storage location, i.e., a place
to contain or hold the value of a data item.

GSAS Detailed Design Document Glossary

Version 5.0 Page GL-4 March 2006

	Volume #
	GSAS Detailed Design Document
	Version 5.0
	Jeffrey Lee/SGT, Inc. Cryospheric Sciences Branch Hydrospheric and Biospheric Sciences Laboratory...
	March 2006

	Foreword
	Table of Contents
	Foreword iii
	Table of Contents v
	List of Figures ix
	List of Tables xi
	Section 1 Introduction
	1.1 Identification of Document 1-1
	1.2 Scope of Document 1-1
	1.3 Purpose and Objectives of Document 1-1
	1.4 Document Status and Schedule 1-1
	1.5 Document Organization 1-1
	1.6 Document Change History 1-2

	Section 2 Related Documentation
	2.1 Parent Documents 2-1
	2.2 Applicable Documents 2-1
	2.3 Information Documents 2-2

	Section 3 Design Issues
	3.1 Requirements 3-1
	3.2 Single vs. Multiple Executables 3-1
	3.3 Software Reuse 3-2
	3.4 I/O and Unit Conversion 3-2
	3.5 Reprocessing and Pass-Thrus 3-2
	3.6 Data Buffering 3-3

	Section 4 Design Overview
	4.1 GSAS Design Overview 4-1
	4.2 PGEs 4-1
	4.3 Files 4-3
	4.4 Science Algorithms 4-3
	4.5 Utilities 4-3

	Section 5 Foundation Libraries
	5.1 The Platform Library (platform_lib) 5-1
	5.2 The Control Library (cntrl_lib) 5-2
	5.3 The Error Library (err_lib) 5-3
	5.4 The Math Library (math_lib) 5-4
	5.5 The Ancillary Library (anc_lib) 5-5
	5.6 The File Library (file_lib) 5-7
	5.7 The Time Library (time_lib) 5-7
	5.8 The Product Library (prod_lib) 5-8
	5.9 The Exec Library (exec_lib) 5-9

	Section 6 Common Functionality
	6.1 Control File Parsing 6-1
	6.2 ANC07 Constants Files 6-5
	6.3 Invalid Values and Error/Status Reporting 6-6
	6.4 ANC06 Metadata/Log File 6-9
	6.5 Product Internal Data Storage, Conversion and I/O 6-10
	6.6 Product Headers 6-13
	6.7 Summary 6-13

	Section 7 GSAS Core PGEs
	7.1 Function 7-1
	7.2 Requirements 7-1
	7.3 Approach 7-1
	7.4 Design 7-2

	Section 8 GLAS_L0proc
	8.1 Overview 8-1
	8.2 Function 8-1
	8.3 Approach 8-2
	8.4 Input and Output Files 8-2
	8.5 Design 8-7

	Section 9 GLAS_L1A
	9.1 Overview 9-1
	9.2 Function 9-1
	9.3 Design Approach 9-1
	9.4 Input and Output Files 9-2
	9.5 GLAS_L1A PGE 9-2
	9.6 L1A Manager (L1A_Mgr) 9-4
	9.7 PGE/Manager Implementation Details 9-6
	9.8 L1A_Subsystem 9-7

	Section 10 GLAS_Alt
	10.1 Function 10-1
	10.2 Design Approach 10-1
	10.3 Input and Output Files 10-2
	10.4 GLAS_Alt 10-5
	10.5 Waveform Manager (WF_Mgr) 10-5
	10.6 Elevation Manager (Elev_Mgr) 10-9
	10.7 PGE/Manager Implementation Details 10-13
	10.8 WF_Subsystem 10-13
	10.9 Elev_Subsystem 10-21

	Section 11 GLAS_Atm
	11.1 Overview 11-1
	11.2 Function 11-1
	11.3 Design Approach 11-1
	11.4 Input and Output Files 11-2
	11.5 Functions 11-4
	11.6 Atm_Subsystem 11-9

	Section 12 GLAS_Reader
	12.1 Function 12-1
	12.2 Design Approach 12-1
	12.3 Input and Output Files 12-1
	12.4 GLAS_Reader 12-2

	Section 13 met_util
	13.1 Overview 13-1
	13.2 Function 13-1
	13.3 Design Approach 13-1
	13.4 Input and Output Files 13-1
	13.5 Functions 13-1
	13.6 Functional Overview 13-2

	Section 14 reforbit_util
	14.1 Overview 14-1
	14.2 Function 14-1
	14.3 Design Approach 14-1
	14.4 Input and Output Files 14-1
	14.5 Functions 14-1
	14.6 Functional Overview 14-2

	Section 15 createGran_util
	15.1 Overview 15-1
	15.2 Function 15-1
	15.3 Design Approach 15-1
	15.4 Input and Output Files 15-4
	15.5 Functions 15-5
	15.6 Functional Overview 15-5

	Section 16 atm_anc
	16.1 Overview 16-1
	16.2 Function 16-1
	16.3 Design Approach 16-1
	16.4 Input and Output Files 16-1
	16.5 Functions 16-2
	16.6 Functional Overview of Calibration Modules 16-2

	Section 17 GLAS_Meta
	17.1 Function 17-1
	17.2 Design Approach 17-1
	17.3 Input and Output Files 17-1
	17.4 GLAS_Meta 17-3

	Section 18 GLAS_Tick
	18.1 Function 18-1
	18.2 Design Approach 18-1
	18.3 Input and Output Files 18-1
	18.4 GLAS_Tick 18-2

	Section 19 GLAS_APID
	19.1 Function 19-1
	19.2 Design Approach 19-1
	19.3 Input and Output Files 19-1
	19.4 GLAS_APID 19-2

	Section 20 Maker
	20.1 Overview 20-1
	20.2 Function 20-1
	20.3 Design Approach 20-1
	20.4 Input and Output Files 20-1
	20.5 Functions 20-1
	20.6 Functional Overview 20-3

	Appendix A Processing Scenarios
	Appendix B Makefiles and Libraries
	B.1 Compilation B-1
	B.2 Using Libraries B-2
	B.3 Some Development Hints B-2
	B.4 Makefile Details B-3
	B.5 Types of Makefiles B-3
	B.6 A Sample Heavily-Commented Makefile B-4
	Abbreviations & Acronyms AB-1
	Glossary GL-1

	List of Figures
	List of Tables
	Introduction
	1.1 Identification of Document
	1.2 Scope of Document
	Figure 1-1 I-SIPS Software Top-Level Decomposition

	1.3 Purpose and Objectives of Document
	1.4 Document Status and Schedule
	1.5 Document Organization
	1.6 Document Change History

	Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents

	Design Issues
	3.1 Requirements
	3.2 Single vs. Multiple Executables
	3.3 Software Reuse
	3.4 I/O and Unit Conversion
	3.5 Reprocessing and Pass-Thrus
	3.6 Data Buffering

	Design Overview
	4.1 GSAS Design Overview
	Figure 4-1 GSAS Layers

	4.2 PGEs
	Figure 4-2 Simplified GSAS Data Flow Diagram

	4.3 Files
	4.4 Science Algorithms
	Table 4-1 Subsystem, Libraries and Products

	4.5 Utilities

	Foundation Libraries
	Table 5-1 Library Inter-dependencies
	5.1 The Platform Library (platform_lib)
	Table 5-2 platform_lib Modules

	5.2 The Control Library (cntrl_lib)
	Table 5-3 cntrl_lib Modules�

	5.3 The Error Library (err_lib)
	Table 5-4 err_lib Modules�

	5.4 The Math Library (math_lib)
	Table 5-5 math_lib Modules�

	5.5 The Ancillary Library (anc_lib)
	Table 5-6 anc_lib Modules�

	5.6 The File Library (file_lib)
	Table 5-7 file_lib Modules�

	5.7 The Time Library (time_lib)
	Table 5-8 time_lib Modules�

	5.8 The Product Library (prod_lib)
	Table 5-9 prod_lib Modules�

	5.9 The Exec Library (exec_lib)
	Table 5-10 fexec_lib Modules�

	Common Functionality
	6.1 Control File Parsing
	Table 6-1 Required Single-Instance Keywords
	Table 6-2 Optional Multiple-Instance Keywords �
	6.1.1 PASSID Specification
	Table 6-3 PASSID Control Line Elements�
	Table 6-4 passid Field Description

	6.1.2 Input/Output File Specification
	Table 6-5 File Segment and Version Fields

	6.1.3 Input Data Time Selection
	6.1.4 Output Data Time Selection
	6.1.5 Execution scenarios

	6.2 ANC07 Constants Files
	6.3 Invalid Values and Error/Status Reporting
	6.3.1 Invalid Values
	Table 6-6 Invalid Values

	6.3.2 Exit Status
	Table 6-7 PGE Exit Status Codes �

	6.3.3 Error and Status Reporting
	Figure 6-1 Error Ancillary File Format
	Table 6-8 Error String Format �
	Table 6-9 Error Sections �
	Table 6-10 Error Severity Codes �

	6.4 ANC06 Metadata/Log File
	6.5 Product Internal Data Storage, Conversion and I/O
	6.5.1 Product Modules
	Table 6-11 Product Module Functionality

	6.5.2 Internal Product Data Storage
	6.5.3 Product Input/Output
	6.5.4 Product-to-Algorithm Conversion (P2A)
	6.5.5 Pass-Thru
	6.5.6 Managers
	6.5.7 Algorithm to Product Conversion (A2P)

	6.6 Product Headers
	6.7 Summary

	GSAS Core PGEs
	7.1 Function
	7.2 Requirements
	7.3 Approach
	7.4 Design
	Figure 7-1 Top-Level Structure Chart
	7.4.1 MainInit
	Figure 7-2 MainInit
	7.4.1.1 Error_Boot
	7.4.1.2 fCntl_Init
	7.4.1.3 GLAxx_scal_init, GLAxx_prod_init, GLAxx_alg_init

	7.4.2 eCntl_Init
	7.4.3 GetControl
	Figure 7-3 GetControl
	7.4.3.1 Init_StdCntl
	7.4.3.2 OpenCF
	7.4.3.3 Parse_StdCntl
	7.4.3.4 Sanity_Check

	7.4.4 OpenFiles
	7.4.5 PrintCntl
	7.4.6 Write_LibVer
	7.4.7 ReadAnc
	7.4.8 Write_AncVer
	7.4.9 ReadData
	Figure 7-4 ReadData
	7.4.9.1 ReadRecord
	7.4.9.2 next_granule
	7.4.9.3 InvalidRec

	7.4.10 Managers
	7.4.11 MainWrap

	GLAS_L0proc
	8.1 Overview
	8.2 Function
	8.3 Approach
	8.4 Input and Output Files
	Table 8-1 GLAS_L0proc Inputs
	Table 8-2 GLAS_L0proc Outputs
	8.4.1 GLA00 APID Files
	Table 8-3 Supported APIDs�

	8.4.2 ANC33 MET Counter to UTC Conversion File
	Table 8-4 ANC33 Field Descriptions�

	8.4.3 Control File
	8.4.4 ANC29 Index File
	Table 8-5 ANC29 Format/Description

	8.4.5 ANC32 GPS File
	Table 8-6 ANC32 Format/Description �

	8.5 Design
	Figure 8-1 GLAS_L0proc Structure Chart
	8.5.1 PGE Core Routines
	8.5.2 ReadGLOP
	8.5.3 sort_gla00_index
	8.5.4 sort_gps
	8.5.5 utc_time_conversion
	8.5.6 Index_Grouping

	GLAS_L1A
	9.1 Overview
	9.2 Function
	9.3 Design Approach
	9.4 Input and Output Files
	Table 9-1 GLAS_L1A Inputs
	Table 9-2 GLAS_L1A Outputs

	9.5 GLAS_L1A PGE
	Figure 9-1 GLAS_L1A Structure Chart
	9.5.1 PGE Core Routines

	9.6 L1A Manager (L1A_Mgr)
	Figure 9-2 L1A_Mgr Structure Chart
	Figure 9-3 L1A Manager Flow Chart

	9.7 PGE/Manager Implementation Details
	9.7.1 ANC29/ANC32/GLA00 Input
	9.7.2 Missing APIDs

	9.8 L1A_Subsystem
	Figure 9-4 Level 1A Computations
	9.8.1 Subsystem Design Decisions and Assumptions
	9.8.2 DFDs and their Descriptions
	9.8.2.1 Level 1A Altimeter Processing
	9.8.2.2 L1A Atmosphere Processing
	9.8.2.3 Engineering Data Processing
	9.8.2.4 Collect Instrument and S/C Position and Attitude
	9.8.2.5 Calculate Shot Time
	9.8.2.6 Get Predicted Location

	GLAS_Alt
	10.1 Function
	10.2 Design Approach
	10.3 Input and Output Files
	Table 10-1 GLAS_Alt Inputs�
	Table 10-2 GLAS_Alt Outputs�

	10.4 GLAS_Alt
	10.4.1 PGE Core Routines

	10.5 Waveform Manager (WF_Mgr)
	Figure 10-1 WFMgr Structure Chart
	10.5.1 WFMgr Subprocesses

	10.6 Elevation Manager (Elev_Mgr)
	Figure 10-2 ElevMgr Structure Chart
	10.6.1 ElevMgr Subprocesses

	10.7 PGE/Manager Implementation Details
	10.7.1 GLA05 Requirement

	10.8 WF_Subsystem
	10.8.1 Assess Waveforms (W_Assess)
	10.8.1.1 W_Assess Subprocesses
	10.8.1.2 Calculate the WF Functional Fit (W_FunctionalFt)
	10.8.1.3 W_FunctionalFt Subprocesses

	10.9 Elev_Subsystem
	10.9.1 L1B DFDs and their Descriptions
	10.9.1.1 Calculate Coelev, Azimuth & Sun Angle (C_Beam_Sun_Ang)
	10.9.1.2 Interpolate POD (C_IntrpPOD)
	10.9.1.3 Tide Correction Routines (E_CalcLoadTD, E_CalcOceanTD, E_CalcEarthTD)
	10.9.1.3.1 Compute Load Tide Correction (E_calcLoadTd)
	10.9.1.3.2 Compute Ocean Tide Correction (E_calcOceanTd)
	10.9.1.3.3 Compute Earth Tide Correction (E_calcEarthTd)

	10.9.1.4 Calculate Std surface Elevation and spot loc (C_CalcSploc)
	10.9.1.5 Interpolate Geoids (C_GetGeoid)
	10.9.1.6 Calculate Troposphere Corrections (E_CalcTrop)
	10.9.1.7 Calculate Angle (C_CalcAngle)
	10.9.1.8 10.9.1.8 Identify Regions (C_GetRegions)
	10.9.1.9 10.9.1.9 Interpolate DEM (E_CalcDEM)
	10.9.1.10 10.9.1.10 Calculate Slope & Roughness (E_CalcSlope)
	10.9.1.11 Create L1B Quality Statistics (update_GLA06QA)
	10.9.1.12 10.9.1.12 Create L1B Quality Statistics

	10.9.2 L2 DFDs and their Descriptions
	10.9.2.1 Calc Reg Params (E_OceanParm, E_LandParm)
	10.9.2.2 Create L2 Elevations QA (update_GLA12QA, update_GLA13QA, update_GLA14QA, update_GLA15QA)
	10.9.2.3 Create Elevation QA Statistics (wrapUpQAP06, wrapUpQAP12_15)

	GLAS_Atm
	11.1 Overview
	11.2 Function
	11.3 Design Approach
	11.4 Input and Output Files
	Table 11-1 GLAS_Atm Inputs�
	Table 11-2 GLAS_Atm Outputs �

	11.5 Functions
	Figure 11-1 GLAS_Atm Structure Chart
	11.5.1 PGE Core Routines
	11.5.2 Atm Manager (Atm_Mgr)
	Figure 11-2 Atm_Mgr Structure Chart
	Figure 11-3 ATM Manager - Part 1
	Figure 11-4 ATM Manager - Part 2

	11.6 Atm_Subsystem
	Figure 11-5 Atmosphere Subsystem Processes
	11.6.1 DFDs and their Descriptions
	11.6.1.1 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM Subprocesses
	Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM Subprocesses
	11.6.1.1.1 ATM L1B Calculate Calibration Coefficients (A_cal_cofs)
	11.6.1.1.2 ATM L1B Interpolate POD (C_IntrpPOD)
	11.6.1.1.3 ATM L1B Calculate Profile Locations (C_CalcSpLoc)
	11.6.1.1.4 ATM L1B Get Geoid (C_GetGeoid)
	11.6.1.1.5 ATM L1B Calculate DEM (E_CalcDEM)

	11.6.1.2 ATM L1B Backscatter Subprocesses
	Figure 11-7 ATM L1B Backscatter Subprocesses
	11.6.1.2.1 ATM L1B Interpolate Met Data (A_interp_met)
	11.6.1.2.2 ATM L1B Calculate Molecular Backscatter Cross Sections (A_mbscs)
	11.6.1.2.3 ATM L1B Vertically Align Profiles (A_rebin_lid)
	11.6.1.2.4 ATM L1B Calculate Backscatter Cross Section Profiles (A_ bscs)

	11.6.1.3 ATM L1B QA Statistics and WriteATM Subprocesses
	Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses
	11.6.1.3.1 ATM L1B Create QA Statistics (A_qa_G7)
	11.6.1.3.2 ATM L1B Write Atmosphere (WriteAtm)

	11.6.1.4 ATM L1B L2 Buffer 20 Seconds Subprocess
	Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses
	11.6.1.4.1 ATM L2 Buffer 20 seconds (A_buff_data)

	11.6.1.5 ATM L2 Calculate Layer Heights Subprocesses
	Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses
	11.6.1.5.1 ATM L2 Calculate Cloud Layers (A_cld_lays)
	11.6.1.5.2 ATM L2 Calculate PBL Layer (A_pbl_lay)
	11.6.1.5.3 ATM L2 Calculate Elevated Aerosol Layers (A_aer_lays)

	11.6.1.6 ATM L2 Calculate Optical Properties
	Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses
	11.6.1.6.1 ATM L2 Calculate Aerosol Optical Properties (A_aer_opt_prop)

	11.6.1.7 ATM L2 QA Statistics and WriteATM Subprocesses
	Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses
	11.6.1.7.1 ATM L1B Write Atmosphere (WriteAtm)

	11.6.2 Structure Charts
	Figure 11-13 ATM Calibration Coefficient / Profile Location / DEM Modules
	Figure 11-14 ATM Backscatter Modules
	Figure 11-15 ATM L1B QA Statistics / Write ATM Modules
	Figure 11-16 ATM 20 sec Buffering Module
	Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules
	Figure 11-18 ATM Optical Properties Module
	Figure 11-19 L2 QA Statistics / Write ATM Modules

	GLAS_Reader
	12.1 Function
	12.2 Design Approach
	12.3 Input and Output Files
	Table 12-1 GLAS_Reader Inputs�

	12.4 GLAS_Reader

	met_util
	13.1 Overview
	13.2 Function
	13.3 Design Approach
	13.4 Input and Output Files
	Table 13-1 met_util Inputs
	Table 13-2 met_util Outputs

	13.5 Functions
	13.6 Functional Overview
	Figure 13-1 Process Flow Diagram: Overall Process
	Figure 13-2 Process Flow Diagram: Shell Script

	reforbit_util
	14.1 Overview
	14.2 Function
	14.3 Design Approach
	14.4 Input and Output Files
	Table 14-1 createGran_util Inputs
	Table 14-2 createGran_util Outputs

	14.5 Functions
	14.6 Functional Overview
	Figure 14-1 Process Flow Diagram

	createGran_util
	15.1 Overview
	15.2 Function
	15.3 Design Approach
	15.3.1 Definitions
	15.3.2 Assumptions

	15.4 Input and Output Files
	Table 15-1 createGran_util Inputs
	Table 15-2 createGran_util Outputs�

	15.5 Functions
	15.6 Functional Overview
	Figure 15-1 Process Flow Diagram

	atm_anc
	16.1 Overview
	16.2 Function
	16.3 Design Approach
	16.4 Input and Output Files
	Table 16-1 atm_anc Inputs�
	Table 16-2 atm_anc Outputs

	16.5 Functions
	Figure 16-1 Process Flow Diagram

	16.6 Functional Overview of Calibration Modules
	16.6.1 Segment Averaging Module (SAM)
	16.6.2 CALibration Module (CALM)

	GLAS_Meta
	17.1 Function
	17.2 Design Approach
	17.3 Input and Output Files
	Table 17-1 GLAS_Meta Inputs�
	Table 17-2 GLAS_Meta Outputs �

	17.4 GLAS_Meta
	17.4.1 PGE Core Routines
	17.4.2 Metadata Processing
	17.4.3 ANC45/ANC46 File Updates

	GLAS_Tick
	18.1 Function
	18.2 Design Approach
	18.3 Input and Output Files
	Table 18-1 GLAS_Tick Inputs�
	Table 18-2 GLAS_Tick Outputs �

	18.4 GLAS_Tick
	18.4.1 PGE Core Routines
	18.4.2 Engineering Statistics Processing
	18.4.3 GPS Update Processing

	GLAS_APID
	19.1 Function
	19.2 Design Approach
	19.3 Input and Output Files
	Table 19-1 GLAS_APID Inputs�
	Table 19-2 GLAS_APID Outputs �

	19.4 GLAS_APID
	19.4.1 PGE Core Routines

	Maker
	20.1 Overview
	20.2 Function
	20.3 Design Approach
	20.4 Input and Output Files
	Table 20-1 Maker Input Files
	Table 20-2 Maker Output Files�

	20.5 Functions
	20.6 Functional Overview

	Processing Scenarios
	Table A-1 Reprocessing Scenarios�

	Makefiles and Libraries
	B.1 Compilation
	B.1.1 To compile the whole distribution
	B.1.2 To compile only the libraries
	B.1.3 To recompile a library in debug mode
	B.1.4 To recompile a library in optimized mode
	B.1.5 To compile a specific executable
	B.1.6 To compile a specific executable in debug mode
	B.1.7 To compile a specific executable in optimized mode

	B.2 Using Libraries
	B.2.1 Development
	B.2.2 Runtime

	B.3 Some Development Hints
	B.4 Makefile Details
	B.5 Types of Makefiles
	B.5.1 The Main Makefile
	B.5.2 The src Makefile
	B.5.3 Library Makefiles
	B.5.4 Subsystem Makefiles
	B.5.5 Exec makefiles

	B.6 A Sample Heavily-Commented Makefile

	Abbreviations & Acronyms
	Glossary

